LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Crystal Structure Reveals Secrets of Enzyme Inhibition

By LabMedica International staff writers
Posted on 01 Dec 2008
Print article
Researchers have used advanced X-ray crystallography techniques to explain how the enzyme inhibitor calpastatin binds to and blocks the enzyme calpain once it has been activated by calcium.

Calpains are non-lysosomal calcium-dependent cysteine proteinases that selectively cleave proteins in response to calcium signals and thereby control cellular functions such as cytoskeletal remodeling, cell cycle progression, gene expression, and apoptotic cell death. Following heart attack or stroke, the influx of blood into the heart muscle causes drastic increases in calcium levels and a burst of calpain activity, which causes significant damage to tissues.

Normally, the activity of calpains is tightly controlled by the endogenous inhibitor calpastatin, which is an intrinsically unstructured protein capable of reversibly binding and inhibiting four molecules of calpain, but only in the presence of calcium. It was not clear how this unstructured protein inhibits calpains without being cleaved itself, nor was it known how calcium induced changes that facilitated the binding of calpastatin to calpain.

Now, in a paper published in the November 20, 2008, issue of the journal Nature investigators at Queen's University (Kingston, ON, Canada) reported that they had obtained the 2.4-angstrom-resolution crystal structure of calcium-bound calpain bound by one of the four inhibitory domains of calpastatin. Calpastatin was seen to inhibit calpain by occupying both sides of the active site cleft. Although the inhibitor passed through the active site cleft, it escaped cleavage in a novel manner by looping out and around the active site cysteine. The inhibitory domain of calpastatin recognized multiple lower affinity sites present only in the calcium-bound form of the enzyme, resulting in an interaction that was tight, specific, and calcium dependent. This crystal structure, and that of a related complex, also revealed the conformational changes that calpain underwent on binding calcium, which included opening of the active site cleft and movement of the domains relative to each other to produce a more compact enzyme.

"This is particularly exciting because the enzyme structure we were seeking – and the way its inhibitor blocks activity without itself being damaged – have proved so elusive until now,” said senior author Dr. Peter Davies, professor of biochemistry at Queen's University.

Related Links:

Queen's University

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)
New
Total 25-Hydroxyvitamin D₂ & D₃ Assay
Total 25-Hydroxyvitamin D₂ & D₃ Assay

Print article

Channels

Molecular Diagnostics

view channel
Image: The study investigated D-dimer testing in patients who are at higher risk of pulmonary embolism (Photo courtesy of Adobe Stock)

D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism

Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Sekisui Diagnostics UK Ltd.