LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Blood-Based Biomarker Test Could Identify Patients at High Risk of Severe COVID-19

By LabMedica International staff writers
Posted on 08 Dec 2021
Print article
Image: Blood-Based biomarker test could identify patients at high risk of severe COVID-19 (Photo courtesy of WEHI)
Image: Blood-Based biomarker test could identify patients at high risk of severe COVID-19 (Photo courtesy of WEHI)

Researchers have discovered a biomarker that could assist in the early identification of people at high risk of developing severe COVID-19.

Led by computational researchers from The Walter and Eliza Hall Institute of Medical Research (WEHI; Parkville, Australia), the study used advanced spatial transcriptomic techniques to screen for genes associated with excessive inflammation in the lungs, a key indicator of severe COVID-19.

The research team collected samples from 30 patients across three groups: 10 patients with COVID-19, 10 with H1N1 influenza and 10 uninfected. The research team was able to generate a gene transcriptional landscape showing how different parts of the lung are impacted in each scenario. The IFI27 gene, known to be activated by the immune system in response to viruses, was found to predict disease progression and is strongly associated with disease severity. The discovery would pave the way for a diagnostic test to be developed, so patients who were at high-risk of severe COVID-19 could be triaged and treated early.

The findings have the potential to revolutionize the way patients are treated and alleviate pressure on the healthcare system. The researchers are now participating in an international effort to translate this research into a diagnostic test to identify patients at high-risk of severe COVID-19 during the early stages of their infection, to better target health-care intervention and prevent ICU admissions associated with severe disease.

“Only a limited number of biomarkers were found to be significantly upregulated in the lungs of COVID-19 patients, compared to patients with influenza. The presence of the IFI27 gene was a reliable prediction of severe lung inflammation,” said Dr. Chin Wee Tan. “Our multi-cohort follow up study, has shown that expression of the IFI27 biomarker in COVID-19 patients can predict disease progression and is strongly associated with disease severity."

“When a patient presents to a clinic, we could assess how severe their symptoms will become by measuring the IF127 levels in the blood - regardless of the symptoms they’re presenting,” added Associate Professor Melissa Davis.

Related Links:
WEHI 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
SARS-CoV-2 Test
One Step SARS-CoV-2 Nucleic Acid Detection Kit (P761H)

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more