We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Rapid COVID-19 Diagnostic Tests Use Innovative Techniques that Improve Accuracy Rivaling Gold Standard PCR Test

By LabMedica International staff writers
Posted on 16 Jun 2021
Print article
Illustration
Illustration
Researchers have developed two rapid diagnostic tests for COVID-19 that are nearly as accurate as the gold-standard test currently used in laboratories.

Unlike the gold standard test, which extracts RNA and uses it to amplify the DNA of the virus, these new tests developed by researchers at University of Maryland School of Medicine (Baltimore, MD, USA) can detect the presence of the virus in as little as five minutes using different methods. They do not require the extraction of the virus's RNA - which is both complicated and time consuming. Both tests are more reliable than the rapid antigen tests currently on the market, which detect the virus only in those with significantly high viral levels.

One test is a COVID-19 molecular diagnostic test, called Antisense that uses electrochemical sensing to detect the presence of the virus. The test detects the virus in a swab sample using an innovative technology called electrochemical sensing. It uses a unique dual-pronged molecular detection approach that integrates electrochemical sensing to rapidly detect the SARS-CoV-2 virus.

Similar to the Antisense test, the second rapid test also does not require the use of any advanced laboratory techniques, such as those commonly used to extract RNA, for analysis. It uses a simple assay containing plasmonic gold nanoparticles to detect a color change when the virus is present. Once a nasal swab or saliva sample is obtained from a patient, the nucleic acid (bits of genetic material) in the sample is amplified via a simple process that takes about 10 minutes. The test uses a highly specific molecule attached to the gold nanoparticles to detect a particular protein. This protein is part of the genetic sequence that is unique to the novel coronavirus. When the biosensor binds to the virus's gene sequence, the gold nanoparticles respond by turning the liquid reagent from purple to blue.

"These tests detect the presence of the virus within 5 to 10 minutes and rely on simple processes that can be performed with little lab training," said Dipanjan Pan, PhD, Professor of Diagnostic Radiology and Nuclear Medicine and Pediatrics at UMSOM. "These two newer tests are extremely sensitive and can detect the presence of the virus, even in those with low levels of the virus."

Related Links:
University of Maryland School of Medicine

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
SARS-CoV-2 Test
One Step SARS-CoV-2 Nucleic Acid Detection Kit (P761H)

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more