LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Simplified Rapid COVID-19 Testing Protocol Requires Less Labor, Expertise and Equipment

By LabMedica International staff writers
Posted on 13 Jan 2021
Print article
Image: Sean Paz, co-author and a graduate student in FAU’s Schmidt College of Medicine, loads COVID-19 tests in a PCR (polymerase chain reaction) machine (Photo courtesy of FAU).
Image: Sean Paz, co-author and a graduate student in FAU’s Schmidt College of Medicine, loads COVID-19 tests in a PCR (polymerase chain reaction) machine (Photo courtesy of FAU).
A simplified COVID-19 testing protocol that offers a distinct advantage over the standard viral or universal transport medium (VTM) can detect minimal quantities of the SARS-CoV-2 using samples from both upper respiratory tract swabs (nasal and throat) as well as saliva, and can be used in research laboratories with minimal molecular biology equipment and expertise.

The testing protocol developed by researchers at the Schmidt College of Medicine at Florida Atlantic University (Boca Raton, FL, USA) aims to meet the urgent need for introducing alternative reagents and approaches to provide nucleic-acid testing in the face of heightened demand and potential shortages. The protocol utilizes TRIzol (guanidinium thiocyanate/phenol-chloroform) to purify the viral RNA from different types of clinical specimens, requires minimal biosafety level precautions and, given its high sensitivity, can be easily adapted to pooling samples strategies. Using this simplified protocol, samples are eluted in TRIzol immediately after collection and RNA is extracted. Results have shown that this protocol is as efficient, if not more than the CDC-approved silica-membrane based RNA purification microcolumns in isolating small amounts of viral and cellular RNA from multiple types of samples (nasal and throat swabs and saliva).

With this new approach, samples are first pooled and tested; positive pools are then retested individually. This relatively simple solution decreases the testing resources used but results in a loss in sensitivity from diluting positive patient samples with negative ones, hence the need of highly-sensitive tests that utilize biological materials, like saliva, which can be obtained in larger amounts and can be easily preserved for re-testing. The protocol uses common chemical reagents that are in abundant supply and can isolate high-quality RNA that can be utilized for multiple assays and RNA sequencing projects. In addition, samples in TRIzol can be preserved at 4 C for more than a week with minimal degradation and little to no loss of viral RNA. Moreover, the ability to use saliva samples, which are as- or more sensitive and reliable than nasopharyngeal swabs, offers an attractive specimen alternative.

“The high sensitivity of our protocol may be useful in testing patients with low viral titers such as asymptomatic patients or testing individuals prior to quarantine release. Our method also enables several patient samples to be pooled, decreasing the number of tests required for larger populations,” said Massimo Caputi, Ph.D., lead author and a professor of biomedical science in FAU’s Schmidt College of Medicine. “In addition, testing can easily be carried out by any research laboratory equipped with minimal standard equipment. Since saliva can be utilized as a reliable source of virus, samples can be self-obtained by patients and inactivated in TRIzol, eliminating the need for medical staff and higher-level biosafety protocols and facilities.”

Related Links:
Florida Atlantic University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
COVID-19 Rapid Test
AQ+ COVID-19 Ag Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more