LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma

By LabMedica International staff writers
Posted on 14 Apr 2025
Image: The study demonstrated that electric-field molecular fingerprinting can probe cancer (Photo courtesy of ACS Central Science, 2025, 10.1021/acscentsci.4c02164)
Image: The study demonstrated that electric-field molecular fingerprinting can probe cancer (Photo courtesy of ACS Central Science, 2025, 10.1021/acscentsci.4c02164)

Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared light to identify molecular signatures in blood plasma that may indicate the presence of certain cancers. In this proof-of-concept study, blood plasma samples from over 2,000 individuals were analyzed to correlate specific molecular patterns with lung cancer, suggesting the possibility of a unique "cancer fingerprint."

Blood plasma, the liquid component of blood, is free of cells and transports various molecules, including proteins, metabolites, lipids, and salts throughout the body. Certain molecules within plasma can serve as biomarkers for potential health issues. For example, elevated levels of prostate-specific antigen are used for prostate cancer screening. A medical test that could analyze a wide range of molecules might be capable of identifying specific patterns associated with different types of cancer, enabling faster diagnoses and reducing healthcare costs. To identify potential chemical markers of cancer, researchers from Ludwig Maximilian University of Munich (Munich, Germany) employed a method called electric-field molecular fingerprinting, which uses pulsed infrared light to analyze complex molecular mixtures in blood plasma.

In their study, the researchers applied this technique by directing ultra-short infrared light pulses through plasma samples. They then analyzed data from 2,533 participants, including individuals with lung, prostate, breast, or bladder cancer, as well as healthy controls. For each sample, they captured the "infrared molecular fingerprint," which represents the light emitted by the molecular components of the plasma. By examining these diverse molecular patterns from both cancer patients and non-cancer controls, the researchers trained a machine learning model to identify specific molecular signatures associated with the four cancer types. The model was tested on a separate set of samples to assess its ability to recognize new, unseen data. The technique achieved up to 81% accuracy in detecting lung cancer-related molecular patterns and distinguishing them from non-cancer samples. However, the model's performance was less effective in identifying the other three types of cancer. Moving forward, the researchers plan to refine and expand their approach to detect additional cancers and other health conditions.

"Laser-based infrared molecular fingerprinting detects cancer, demonstrating its potential for clinical diagnostics,” said LMU Munich researcher Mihaela Žigman. “With further technological developments and independent validation in sufficiently powered clinical studies, it could establish generalizable applications and translate into clinical practice — advancing the way we diagnose and screen for cancer today.”

Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Laboratory Software
ArtelWare
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more