POC Paper-Based Sensor Platform to Transform Cardiac Diagnostics
By LabMedica International staff writers Posted on 11 Feb 2025 |

Cardiovascular diseases continue to be the leading cause of death worldwide, accounting for over 19 million fatalities annually. Early detection of myocardial infarction (MI), commonly known as a heart attack, is essential for reducing mortality rates and improving patient outcomes. However, current high-sensitivity cardiac troponin I (cTnI) assays rely on large, costly laboratory equipment that requires trained personnel, limiting access to critical cardiac diagnostics, especially in low-resource settings where prompt clinical decision-making is vital. A new innovation, a deep learning-powered chemiluminescence vertical flow assay (CL-VFA), now brings laboratory-quality cTnI testing to a portable, cost-efficient point-of-care platform.
Researchers from the University of California, Los Angeles (UCLA, Los Angeles, CA, USA) have demonstrated how integrating chemiluminescence-based biosensing, high-sensitivity imaging via a portable reader, and AI-driven data analysis allows for rapid and highly sensitive cTnI quantification for MI detection in various clinical environments. This technology has the potential to provide fast, reliable cardiac diagnostics, particularly in areas with limited resources where advanced laboratory infrastructure is unavailable. In a study published in Small, the team introduced a novel point-of-care diagnostic platform that delivers high-sensitivity troponin testing in a compact, portable, and affordable design.
This platform integrates deep learning-based computational analysis with highly sensitive chemiluminescence biosensing, enabling the detection of cTnI at concentrations as low as 0.1-0.2 pg/mL and a broad dynamic range from less than 1 pg/mL to 100 ng/mL. These features outperform existing point-of-care devices and meet the clinical standards required for high-sensitivity troponin testing, which is crucial for early MI diagnosis and risk stratification. The sensor requires only 50 µL of serum and uses a streamlined workflow, allowing medical staff to perform tests with ease. It provides cTnI results in just 25 minutes, facilitating quick clinical decision-making. The computational sensor works in two primary phases: an immunoassay phase followed by washing and a chemiluminescence signal generation phase. During the immunoassay phase, a polymerized enzyme-based conjugate binds to cTnI in the serum. In the signal generation phase, a chemiluminescent material is activated by an enzymatic reaction, producing a light signal that is captured by a custom-designed portable reader. A deep learning algorithm then processes these images to determine cTnI concentrations in the serum sample.
The team validated the sensor platform rigorously using clinical serum samples. In a blinded validation study with patient samples, the sensor showed a strong correlation with an FDA-cleared laboratory analyzer, confirming its reliability, clinical accuracy, and potential for real-world diagnostic applications. The researchers plan to expand this paper-based sensor platform by integrating multiplexed detection of several cardiovascular biomarkers, allowing for comprehensive cardiac risk assessments in a single test. The high sensitivity, portability, simplicity, and affordability of this platform make it a viable alternative to traditional laboratory-based testing, bringing high-sensitivity cardiac diagnostics closer to patients. By democratizing access to fast, reliable biomarker testing, this innovation has the potential to enhance clinical decision-making, improve patient outcomes, and expand cardiac care globally, particularly in resource-constrained and decentralized healthcare settings.
“This technology represents a major step toward democratizing high-quality cardiac diagnostics,” said Dr. Aydogan Ozcan from UCLA who led the research team. “By combining AI-powered analysis, chemiluminescence biosensing, and portable high-sensitivity imaging, we can bridge the gap between central laboratory testing and real-time clinical decision-making in emergency rooms, rural clinics, and decentralized healthcare settings.”
Latest Technology News
- Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
- Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
- Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
- Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
- Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
- Smartphones Could Diagnose Diseases Using Infrared Scans
- Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
- 3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
- Study Explores Impact of POC Testing on Future of Diagnostics
- Low-Cost, Fast Response Sensor Enables Early and Accurate Detection of Lung Cancer
- Nanotechnology For Cervical Cancer Diagnosis Could Replace Invasive Pap Smears
- Lab-On-Chip Platform to Expedite Cancer Diagnoses
- Biosensing Platform Simultaneously Detects Vitamin C and SARS-CoV-2
- New Lens Method Analyzes Tears for Early Disease Detection
- FET-Based Sensors Pave Way for Portable Diagnostic Devices Capable of Detecting Multiple Diseases
- Paper-Based Biosensor System to Detect Glucose Using Sweat Could Revolutionize Diabetes Management
Channels
Clinical Chemistry
view channelMass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more
First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read more
Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse
Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read moreMolecular Diagnostics
view channel
First-in-Class Diagnostic Blood Test Detects Axial Spondyloarthritis
Axial spondyloarthritis (axSpA) is a chronic inflammatory autoimmune condition that typically affects individuals during their most productive years, with symptoms often emerging before the age of 45.... Read more
New Molecular Label to Help Develop Simpler and Faster Tuberculosis Tests
Tuberculosis (TB), the deadliest infectious disease globally, is responsible for infecting an estimated 10 million people each year and causing over 1 million deaths annually. While chest X-rays and molecular... Read more
Biomarker Discovery Paves Way for Blood Tests to Detect and Treat Osteoarthritis
The number of individuals affected by osteoarthritis is projected to exceed 1 billion by 2050. The primary risk factor for this common, often painful chronic joint condition is aging, and, like aging itself,... Read moreHematology
view channel
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read more
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, led to 1.25 million deaths in 2023, with 13% of those occurring in people living with HIV. The current primary diagnostic method for... Read more
New Test Diagnoses Bacterial Meningitis Quickly and Accurately
Bacterial meningitis is a potentially fatal condition, with one in six patients dying and half of the survivors experiencing lasting symptoms. Therefore, rapid diagnosis and treatment are critical.... Read morePathology
view channel
Groundbreaking Chest Pain Triage Algorithm to Transform Cardiac Care
Cardiovascular disease is responsible for a third of all deaths worldwide, and chest pain is the second most common reason for emergency department (ED) visits. With EDs often being some of the busiest... Read more
AI-Based Liquid Biopsy Approach to Revolutionize Brain Cancer Detection
Detecting brain cancers remains extremely challenging, with many patients only receiving a diagnosis at later stages after symptoms like headaches, seizures, or cognitive issues appear. Late-stage diagnoses... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more