LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Paper-Based Biosensor System to Detect Glucose Using Sweat Could Revolutionize Diabetes Management

By LabMedica International staff writers
Posted on 17 Dec 2024
Image: The new paper-based biosensor system uses bacterial spores that germinate in response to glucose in potassium-rich bodily fluids, such as sweat (Photo courtesy of Binghamton University)
Image: The new paper-based biosensor system uses bacterial spores that germinate in response to glucose in potassium-rich bodily fluids, such as sweat (Photo courtesy of Binghamton University)

Millions of individuals with diabetes monitor their glucose levels daily using finger-stick devices that draw and analyze blood. But imagine if this could be done with just a sweat sensor. This is the concept behind new research that could change diabetes management by eliminating the discomfort and inconvenience of traditional methods.

Traditional glucose monitoring systems use enzymatic reactions with blood samples, but these methods are not shelf-stable, making them difficult to store and ship. The self-replicating properties of bacteria, however, offer a potential solution. Researchers at Binghamton University (New York, NY, USA) have developed a new paper-based biosensor system that uses Bacillus subtilis bacterial spores, which germinate in response to glucose in potassium-rich fluids like sweat. The power generated by the spores indicates the glucose level, and the system can withstand harsh environments, activating only when the right conditions are met. This novel approach could transform diabetes management by eliminating the need for painful finger-stick blood samples.

The research team had previously used paper as a platform to create detectors for lead ions in seawater. Their earlier work also includes integrating biobatteries into 3D-printed circuits, creating devices that generate moisture from the air, and designing self-powered mechanical bugs for collecting ocean data. In light of the current global energy crisis, using bacteria to generate power presents a promising, sustainable solution. Since the biosensor is paper-based and disposable, it is cost-effective and simple to use. After publishing their findings in the journal Microsystems & Nanoengineering, the researchers are now working on refining the detection process further.

“Everyone has a different potassium concentration in their sweat, and I don’t know how this concentration affects the glucose,” said Professor Seokheun “Sean” Choi, who adapted the knowledge of biobatteries gained in his Bioelectronics and Microsystems Lab over the past 15 years to build the paper-based biosensor system. “The sensitivity also is lower than conventional enzymatic biosensors. But from this work, we created a new sensing mechanism to detect glucose. No one has done that yet.”

New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
Capillary Blood Collection Tube
IMPROMINI M3

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more