LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

First-Ever Blood-Powered Chip Offers Real-Time Health Monitoring

By LabMedica International staff writers
Posted on 25 Jun 2024
Image: The proposed self-powered, millifluidic lab-on-a-chip device to determine blood conductivity (Photo courtesy of Advanced Materials/DOI: 10.1002/adma.202403568)
Image: The proposed self-powered, millifluidic lab-on-a-chip device to determine blood conductivity (Photo courtesy of Advanced Materials/DOI: 10.1002/adma.202403568)

Metabolic disorders such as diabetes and osteoporosis are rapidly increasing globally, especially in developing countries. Diagnosing these conditions generally requires blood tests; however, in remote areas with insufficient healthcare infrastructure, many individuals remain undiagnosed and untreated. Traditional diagnostic methods are invasive and labor-intensive, making real-time monitoring impractical, particularly in rural settings. Blood electrical conductivity, which reflects the concentration of key electrolytes like sodium and chloride ions, is crucial for diagnosing various health issues. These electrolytes play a vital role in many physiological processes, but measuring blood conductivity faces challenges such as electrode polarization, limited access to samples, and maintaining consistent blood temperature. Moreover, measuring conductivity at frequencies below 100 Hz, essential for a deeper understanding of blood's electrical properties and underlying biological functions, presents additional difficulties. Researchers are now advancing a novel device that generates electricity from blood to measure its conductivity, thereby facilitating medical care anywhere.

A research team at the University of Pittsburgh (Pittsburgh, PA, USA) has developed a portable millifluidic nanogenerator lab-on-a-chip device that can measure blood conductivity at low frequencies. This device uses blood as a conductive agent within a triboelectric nanogenerator (TENG). The TENG system harnesses mechanical energy from the blood and converts it into electricity through triboelectrification, where electron transfer occurs between contacting materials during movements such as compression or sliding.

This electron transfer and subsequent charge separation create a voltage difference that propels an electric current. The device measures the voltage generated under specific loading conditions to ascertain the blood's electrical conductivity. Its self-powering capability allows for the miniaturization of this innovative blood-based nanogenerator. The team employed AI models to predict blood conductivity directly from the voltage patterns produced by the device, and comparative tests with traditional methods have validated its accuracy. This breakthrough paves the way for deploying diagnostics directly to people's homes. Additionally, blood-powered nanogenerators could operate internally, utilizing the body's own blood chemistry for self-powered diagnostics.

“As the fields of nanotechnology and microfluidics continue to advance, there is a growing opportunity to develop lab-on-a-chip devices capable of surrounding the constraints of modern medical care,” said Amir Alavi, assistant professor of civil and environmental engineering at Pitt’s Swanson School of Engineering. “These technologies could potentially transform healthcare by offering quick and convenient diagnostics, ultimately improving patient outcomes and the effectiveness of medical services.”

Related Links:
University of Pittsburgh

Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Pipette
Accumax Smart Series

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more