New Diagnostic System Achieves PCR Testing Accuracy
By LabMedica International staff writers Posted on 09 Apr 2024 |

While PCR tests are the gold standard of accuracy for virology testing, they come with limitations such as complexity, the need for skilled lab operators, and longer result times. They also require complex chemical reactions which are crucial for amplifying viral DNA or RNA, a process that involves generating multiple copies of the genetic material that can also create and amplify error. Additionally, PCR tests can detect only nucleic acids, the material comprising DNA and RNA, but for certain diseases it can be of great use to detect other biomarkers such as proteins. Now, a groundbreaking diagnostic system offers the ability to accurately identify SARS-CoV-2 and Zika virus with a precision matching or surpassing that of PCR tests, but significantly reducing the time and complexity involved in diagnosis.
The new system developed at UC Santa Cruz (Santa Cruz, CA, USA) in collaboration with the Texas Biomedical Research Institute (San Antonio, TX, USA) combines optofluidics and nanopore technology to create a lab-on-a-chip diagnostic system. Optofluidics refers to the control of tiny amounts of fluids using beams of light, with a nanopore for counting single nucleic acids to read genetic material. The testing process begins with a biofluid sample mixed with magnetic microbeads designed with a matching RNA sequence of the disease for which the test is meant to detect. For instance, in case of a test to detect COVID-19, the microbeads will have strands of SARS-CoV-2 RNA on them. When SARS-CoV-2 virus is present in the sample, the virus's RNA binds to the beads.
After waiting briefly, the magnetic beads are pulled down to the bottom of the container and everything else is washed out. The beads are placed into a silicon microfluidics chip, where they flow through a long, thin channel covered by an ultra-thin membrane. The beads are caught in a light beam that pushes them against a wall in the channel, which contains a nanopore, a tiny opening only 20 nanometers across. In comparison, a human hair is approximately 80,000 - 100,000 nanometers wide. After this, heat is applied to the chip, making the RNA particles come off the beads and sucked into the nanopore, which detects that the virus RNA that is present
For this study, the researchers used various biofluids, including saliva and blood from baboons and marmosets, to understand disease transmission in different animals. The test demonstrated accuracy in virus detection at levels sometimes missed by PCR, indicating potential superior sensitivity. This lab-on-a-chip technology is not only applicable to Zika and COVID-19 but can be adapted to any virus for which the researchers have a genetic sample. The system can be further simplified and minimized, allowing it to simultaneously test for multiple disease types, a feature called disease multiplexing.
“We built up a simple lab-on-a-chip system that can perform testing at a miniature level with the help of microfluidics, silicon chips, and nanopore detection technologies,” said Mohammad Julker Neyen Sampad, a graduate student at the Texas Biomedical Research Institute. “Simple, easy, low resource tool development was our goal — and I believe we got there.”
Related Links:
UC Santa Cruz
Texas Biomedical Research Institute
Latest Technology News
- Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine
- Rapid Diagnostic Technology Utilizes Breath Samples to Detect Lower Respiratory Tract Infections
- Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes
- Wireless Sweat Patch Could Be Used as Diagnostic Test for Cystic Fibrosis
- New Method Advances AI Reliability with Applications in Medical Diagnostics
- Self-Powered Microneedle Patch Collects Biomarker Samples Without Drawing Blood
- Skin Patch Detects Biomarkers in Interstitial Fluid Without Blood Draws
- Handheld Saliva Test Accurately Detects Breast Cancer
- Cutting-Edge AI Algorithms Enable Early Detection of Prostate Cancer
- New Microfluidic System Enables Early Cancer Diagnosis Using Simple Blood Tests
Channels
Clinical Chemistry
view channel
Gold Nanoparticles to Improve Accuracy of Ovarian Cancer Diagnosis
Ovarian cancer is considered one of the deadliest cancers, in part because it rarely shows clear symptoms in its early stages, and diagnosis is often complex. Current approaches make it difficult to accurately... Read more
Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy
Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read moreMolecular Diagnostics
view channel
New DNA Methylation-Based Method Predicts Cancer Progression
Cancer often develops silently for years before diagnosis, making it difficult to trace its origins and predict its progression. Traditional approaches to studying cancer evolution have lacked the precision... Read more
Urine Test Could Predict Outcome of Cartilage Transplant Surgery
Cartilage transplant surgery provides an alternative to artificial joint replacements by using donor tissue to restore knee function. While many patients benefit, outcomes can vary, leaving uncertainty... Read more
2-Hour Cancer Blood Test to Transform Tumor Detection
Glioblastoma and other aggressive cancers remain difficult to control largely because tumors can recur after treatment. Current diagnostic methods, such as invasive biopsies or expensive liquid biopsies,... Read more
Automated High Throughput Immunoassay Test to Advance Neurodegenerative Clinical Research
Alzheimer’s disease and other neurodegenerative disorders remain difficult to diagnose and monitor accurately due to limitations in existing biomarkers. Traditional tau and phosphorylated tau measurements... Read moreHematology
view channel
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
Novel Tool Uses Deep Learning for Precision Cancer Therapy
Nearly 50 new cancer therapies are approved each year, but selecting the right one for patients with highly individual tumor characteristics remains a major challenge. Physicians struggle to navigate the... Read more
Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients
Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read moreMicrobiology
view channel
Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
Sepsis arises from infection and immune dysregulation, with neutrophils playing a central role in its progression. However, current clinical tools are unable to both isolate these cells and assess their... Read more
New Diagnostic Method Confirms Sepsis Infections Earlier
Sepsis remains one of the most dangerous medical emergencies, often progressing rapidly and becoming fatal without timely intervention. Each hour of delayed treatment in septic shock reduces patient survival... Read more
New Markers Could Predict Risk of Severe Chlamydia Infection
Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more
Portable Spectroscopy Rapidly and Noninvasively Detects Bacterial Species in Vaginal Fluid
Vaginal health depends on maintaining a balanced microbiome, particularly certain Lactobacillus species. Disruption of this balance, known as dysbiosis, can increase risks of infection, pregnancy complications,... Read morePathology
view channel
ESR Testing Breakthrough Extends Blood Sample Stability from 4 to 28 Hours
Erythrocyte sedimentation rate (ESR) is one of the most widely ordered blood tests worldwide, helping clinicians detect and monitor infections, autoimmune conditions, cancers, and other diseases.... Read more
Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma
Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more
Clinicopathologic Study Supports Exclusion of Cervical Serous Carcinoma from WHO Classification
High-grade serous carcinoma is a rare diagnosis in cervical biopsies and can be difficult to distinguish from other tumor types. Cervical serous carcinoma is no longer recognized as a primary cervical... Read moreIndustry
view channel
VedaBio Partners With Mammoth Biosciences to Expand CRISPR-Based Diagnostic Technologies
VedaBio (San Diego, CA, USA) has entered into a non-exclusive license agreement with Mammoth Biosciences (Brisbane, CA, USA) for the use of select CRISPR-based technologies in diagnostic applications.... Read more