New Diagnostic System Achieves PCR Testing Accuracy
By LabMedica International staff writers Posted on 09 Apr 2024 |

While PCR tests are the gold standard of accuracy for virology testing, they come with limitations such as complexity, the need for skilled lab operators, and longer result times. They also require complex chemical reactions which are crucial for amplifying viral DNA or RNA, a process that involves generating multiple copies of the genetic material that can also create and amplify error. Additionally, PCR tests can detect only nucleic acids, the material comprising DNA and RNA, but for certain diseases it can be of great use to detect other biomarkers such as proteins. Now, a groundbreaking diagnostic system offers the ability to accurately identify SARS-CoV-2 and Zika virus with a precision matching or surpassing that of PCR tests, but significantly reducing the time and complexity involved in diagnosis.
The new system developed at UC Santa Cruz (Santa Cruz, CA, USA) in collaboration with the Texas Biomedical Research Institute (San Antonio, TX, USA) combines optofluidics and nanopore technology to create a lab-on-a-chip diagnostic system. Optofluidics refers to the control of tiny amounts of fluids using beams of light, with a nanopore for counting single nucleic acids to read genetic material. The testing process begins with a biofluid sample mixed with magnetic microbeads designed with a matching RNA sequence of the disease for which the test is meant to detect. For instance, in case of a test to detect COVID-19, the microbeads will have strands of SARS-CoV-2 RNA on them. When SARS-CoV-2 virus is present in the sample, the virus's RNA binds to the beads.
After waiting briefly, the magnetic beads are pulled down to the bottom of the container and everything else is washed out. The beads are placed into a silicon microfluidics chip, where they flow through a long, thin channel covered by an ultra-thin membrane. The beads are caught in a light beam that pushes them against a wall in the channel, which contains a nanopore, a tiny opening only 20 nanometers across. In comparison, a human hair is approximately 80,000 - 100,000 nanometers wide. After this, heat is applied to the chip, making the RNA particles come off the beads and sucked into the nanopore, which detects that the virus RNA that is present
For this study, the researchers used various biofluids, including saliva and blood from baboons and marmosets, to understand disease transmission in different animals. The test demonstrated accuracy in virus detection at levels sometimes missed by PCR, indicating potential superior sensitivity. This lab-on-a-chip technology is not only applicable to Zika and COVID-19 but can be adapted to any virus for which the researchers have a genetic sample. The system can be further simplified and minimized, allowing it to simultaneously test for multiple disease types, a feature called disease multiplexing.
“We built up a simple lab-on-a-chip system that can perform testing at a miniature level with the help of microfluidics, silicon chips, and nanopore detection technologies,” said Mohammad Julker Neyen Sampad, a graduate student at the Texas Biomedical Research Institute. “Simple, easy, low resource tool development was our goal — and I believe we got there.”
Related Links:
UC Santa Cruz
Texas Biomedical Research Institute
Latest Technology News
- Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation
- Ultra-Sensitive Biosensor Based on Light and AI Enables Early Cancer Diagnosis
- Low-Cost Biosensing Technology Detects Disease Biomarkers in Minutes
- AI Tool Could Help Identify Specific Gut Bacterial Targets for Treatment of Diseases
- Inexpensive DNA Coated Electrode Paves Way for Disposable Diagnostics
- New Miniature Device to Transform Testing of Blood Cancer Treatments
- Biosensing Advancement to Enable Early Detection of Disease Biomarkers at POC
- New POC Biosensing Technology Improves Detection of Molecular Biomarkers
- Enhanced Lab Data Management and AI Critical to Labs of the Future, Finds Survey
- AI-Assisted Non-DNA Based Test Identifies Viral Infections in Minutes
- AI Method Predicts Overall Survival Rate of Prostate Cancer Patients
- Breath Test to Enable Early Detection of Breast Cancer
- First Ever Technology Recognizes Disease Biomarkers Directly in Menstrual Blood in Sanitary Towels
- Tiny Microlaser Sensors with Supercharged Biosensing Ability to Enable Early Disease Diagnosis
- Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
- Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Channels
Clinical Chemistry
view channel
New Clinical Chemistry Analyzer Designed to Meet Growing Demands of Modern Labs
A new clinical chemistry analyzer is designed to provide outstanding performance and maximum efficiency, without compromising affordability, to meet the growing demands of modern laboratories.... Read more
New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
Nucleic acid amplification tests (NAATs) play a key role in diagnosing a wide range of infectious diseases. These tests are generally known for their high sensitivity and specificity, and they can be developed... Read moreMolecular Diagnostics
view channel
New Biomarker Panel to Enable Early Detection of Pancreatic Cancer
Pancreatic cancer (PC) has one of the worst prognoses globally, with only 13% of diagnosed patients surviving for five years or more. In Ireland, there are about 900 cases of pancreatic cancer annually,... Read more
Ultrarapid Whole Genome Sequencing for Neonatal and Pediatric Patients Delivers Results In 48 Hours
Genetic diseases are the leading identifiable cause of infant mortality, and early diagnosis is crucial to improve patient outcomes. In the neonatal and pediatric intensive care units (NICU and PICU),... Read more
AI-Enabled Blood Test Demonstrates Diagnostic, Prognostic and Predictive Utility Across Cancer Continuum
Cancer remains a major challenge in healthcare due to difficulties in early detection and accurate diagnosis. Many cancers are diagnosed at advanced stages, limiting treatment options and impacting survival rates.... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreImmunology
view channel
Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer
Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more
Groundbreaking Lateral Flow Test Quantifies Nucleosomes in Whole Venous Blood in Minutes
Diagnosing immune disruptions quickly and accurately is crucial in conditions such as sepsis, where timely intervention is critical for patient survival. Traditional testing methods can be slow, expensive,... Read moreMicrobiology
view channel
Viral Load Tests Can Help Predict Mpox Severity
Mpox is a viral infection that causes flu-like symptoms and a characteristic rash, which evolves significantly over time and varies between patients. The disease spreads mainly through direct contact with... Read more
Gut Microbiota Analysis Enables Early and Non-Invasive Detection of Gestational Diabetes
Gestational diabetes mellitus is a common metabolic disorder marked by abnormal glucose metabolism during pregnancy, typically emerging in the mid to late stages. It significantly heightens the risk of... Read morePathology
view channel
AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care
Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more
AI Tool Enhances Interpretation of Tissue Samples by Pathologists
Malignant melanoma, a form of skin cancer, is diagnosed by pathologists based on tissue samples. A crucial aspect of this process is estimating the presence of tumor-infiltrating lymphocytes (TILs), immune... Read more
AI-Assisted Technique Tracks Cells Damaged from Injury, Aging and Disease
Senescent cells, which stop growing and reproducing due to injury, aging, or disease, play a critical role in wound repair and aging-related diseases like cancer and heart disease. These cells, however,... Read more
Novel Fluorescent Probe Shows Potential in Precision Cancer Diagnostics and Fluorescence-Guided Surgery
Hepatocellular carcinoma (HCC), a common type of liver cancer, is difficult to diagnose early and accurately due to the limitations of current diagnostic methods. Glycans, carbohydrate structures present... Read moreIndustry
view channel
2025 COMPAMED Innovation Forum Highlights Pioneering Work in Cancer Diagnostics
Cancer cases are among the biggest challenges faced by global healthcare systems. The incidence has risen in recent decades, not least on account of demographic change and escalating risk factors.... Read more
Quanterix Completes Acquisition of Akoya Biosciences
Quanterix Corporation (Billerica, MA, USA) has completed its previously announced acquisition of Akoya Biosciences (Marlborough, MA, USA), paving the way for the creation of the first integrated solution... Read more
Lunit and Microsoft Collaborate to Advance AI-Driven Cancer Diagnosis
Lunit (Seoul, South Korea) and Microsoft (Redmond, WA, USA) have entered into a collaboration to accelerate the delivery of artificial intelligence (AI)-powered healthcare solutions. In conjunction with... Read more