LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Fluorescent Sensor Array Lights up Alzheimer’s-Related Proteins for Earlier Detection

By LabMedica International staff writers
Posted on 08 Feb 2024
Image: Lighting up Alzheimer’s-related proteins allows for earlier disease detection (Photo courtesy of 123RF)
Image: Lighting up Alzheimer’s-related proteins allows for earlier disease detection (Photo courtesy of 123RF)

Many neurodegenerative diseases, such as Alzheimer’s and Parkinson’s, pose a diagnostic challenge in their early stages before symptoms manifest. Identifying disease-related biomarkers like amyloids, which are aggregated proteins, could offer crucial early insights if they can be detected effectively. Now, researchers have developed a new method that employs an array of sensor molecules to illuminate amyloids. This innovation could play a significant role in monitoring disease progression or differentiating various amyloid-related disorders.

In neurodegenerative diseases, a common factor is the disruption of brain communication, often due to “sticky” clumps of misfolded proteins called amyloids that interrupt signal transmission. These amyloids are believed to be integral to Alzheimer’s disease progression, suggesting their potential as early diagnostic markers to broaden treatment possibilities. While radioimaging techniques like positron emission tomography (PET) scans can detect amyloids, they require advanced equipment and generally target only specific amyloids linked to the disease. As an alternative, fluorescence imaging techniques have been investigated for their simpler yet sensitive capability to detect multiple distinct amyloids.

A team of researchers at The University of Sydney (NSW, Australia) set out to develop a fluorescent sensor array specifically for amyloids. This tool aims to monitor Alzheimer’s and other diseases' progression and differentiate atypical amyloids from other naturally occurring amyloid-forming proteins. The team initially combined five coumarin-based molecular probes, each responding with varying fluorescence levels upon encountering amyloids, into an array. They discovered, however, that using just two of these probes, chosen for their strong fluorescence responses, still yielded a highly sensitive detection system and provided a unique fluorescent “fingerprint” for individual amyloids.

The effectiveness of this two-probe array was tested in a simulated biological fluid containing molecules that could potentially disrupt sensing. Nevertheless, the array maintained its high sensitivity and selectivity. Its efficacy was further validated using samples from the brains of mouse models of Alzheimer’s. The researchers noted distinct fluorescence patterns at the early (6 months old) and later (12 months old) stages of the disease. Moreover, the array produced a distinct fluorescence signature for three amyloids typically associated with Alzheimer’s, another disease-related amyloid, and five “functional amyloids” not implicated in the disease. According to the researchers, this tool offers the potential to differentiate between closely related amyloids, paving the way for earlier and more precise diagnosis of amyloid-related diseases.

Related Links:
The University of Sydney

Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automated MALDI-TOF MS System
EXS 3000
Capillary Blood Collection Tube
IMPROMINI M3

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more