LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Infrared Signature for Mobile Phone Detects Malaria

By LabMedica International staff writers
Posted on 13 Dec 2022
Image: The malaria detection tool collects an infrared signature for a mobile phone to process (Photo courtesy of The University of Queensland)
Image: The malaria detection tool collects an infrared signature for a mobile phone to process (Photo courtesy of The University of Queensland)

Optical microscopy, rapid diagnostic tests (RDTs) and molecular tests are the three main diagnostic techniques currently available for malaria diagnosis. Microscopy is the traditional way of detecting malaria parasites in stained thick or thin peripheral blood films using Giemsa, Wrights or Fields stains.

RDTs detect malaria antigens in blood by targeting falciparum-specific protein such as histidine-rich protein II (HRP-II) or lactate dehydrogenase (LDH). RDTs are simple, relatively cheap and can be used in remote areas without specialized equipment or need for electricity. However, RDTs can only reliably detect 50-100 parasites/ µL. Molecular tests such as polymerase chain reaction (PCR) are currently the most accurate and the most sensitive techniques for detecting malaria in low or sub-microscopic samples, for mixed infections and for differentiating Plasmodium species.

An international team of Tropical Medicine Specialists aided by those at The University of Queensland (Brisbane, Australia) hypothesized that the presence of malaria parasites in red blood cells produce unique infrared signatures that could potentially be used for malaria detection. They used a handheld near infrared spectrometer reflective (NIRS) model to non-invasively collect spectral signatures from the right and left ears, arms and fingers of malaria positive and negative individuals living in a malaria endemic area in Brazil where both P. falciparum and P. vivax are prevalent at a 30%/70% ratio. A total of 60 patients were scanned and a total of 360 spectra were collected. The infection status and Plasmodium species type were confirmed by microscopy and standard PCR.

The scientists uses the NIRvascan NIRS model G1 (Allied Scientific Pro, Gatineau, QC . Canada). The model used is a diffuse reflectance spectrometer with wavelength ranging from 900-1700nm, a 5000:1 signal to noise ratio and an optical resolution of 10nm pixel resolution. It has an inGaAs detector (Hamamatsu Photonics, Herrsching Germany), and it weighs 136g and measures 82.2 × 63× 40 mm, it is rechargeable and can be operated by either a computer or a smart-phone via Bluetooth.

The investigators reported that results from PCR confirmed 27/60 (45%) people scanned were positive with malaria while the rest were malaria negative. Of the malaria positive individuals, 75% (N=20) and 25% (N=7), were infected with P. vivax and P. falciparum, respectively. Results from microscopy indicated that out of the 27 infected patients, 7.4% (two subjects) had extremely high parasitaemia, 18.5% (five subjects) had moderate parasitaemia, 44.4% (12 subjects) had low parasitaemia and 29.6% (eight subjects) had very low parasitaemia.

Spectra collected from the ear produced the most accurate prediction of infection in the independent subjects with an accuracy of 92% (N=24), sensitivity of 100% (N=11) and specificity of 85% (N=13). Comparatively, the accuracy, sensitivity and specificity of the spectra collected from the finger was 70% (N=24), 72 (N=11) and 69% (N=13), respectively whereas spectra of the arm resulted into a predictive accuracy of 72% (N=24), sensitivity of 59% (N=11) and specificity of 85% (N=13).

The authors concluded that their proof-of-concept study provides insights on the potential application of NIRS and machine learning techniques for rapid, non-invasive and large-scale surveillance of malaria and potentially other human pathogens. The study was published on December 7, 2022 in the journal PNAS Nexus.

Related Links:
The University of Queensland 
Allied Scientific Pro
Hamamatsu Photonics

New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Laboratory Software
ArtelWare
Automatic Hematology Analyzer
DH-800 Series

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more