LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Revolutionary, Non-Invasive Technique Measures Glucose Levels Without Drawing Blood

By LabMedica International staff writers
Posted on 24 Nov 2022
Image: EM-based subcutaneous implant glucose sensor (Photo courtesy of UNIST)
Image: EM-based subcutaneous implant glucose sensor (Photo courtesy of UNIST)

More than 400 million people worldwide are living with diabetes and they still suffer from pricking their fingers multiple times a day to check their blood glucose levels. One of the main aims of diabetes treatment is to keep blood glucose levels within a specified target range. Diabetes can be diagnosed if fasting blood glucose levels are 126 mg/dL or higher. A normal fasting glucose test result is lower than 100 mg/dL. Various methods alternate to finger-pricking method have been extensively studied for blood glucose detection, such as enzyme-based or optical-based glucose sensor. However, they still have issues in terms of long lifetime, portability, and accuracy. Now, a recent study has reported a new route for measuring blood sugar levels (BGLs) without drawing blood.

In a recent study affiliated with UNIST (Ulsan, Korea), researchers have demonstrated a revolutionary, non-invasive technique for testing blood glucose levels, using electromagnetic (EM)-wave-based glucose sensor inserted under the skin. Their findings have attracted much attention, as it eliminates the need for patients with diabetes to constantly prick their fingers with a glucose meter. In the study, the research team proposed a electromagnetic-based sensor that can be subcutaneously implanted and is capable of tracking minute changes in dielectric permittivity owing to changes in BGLs. The proposed sensor, which is about one-fifth of a cotton swab, can measure changes in glucose concentrations in interstitial fluid (ISF), the liquid that fills spaces between cells.

In the study, the research team demonstrated semi-permanent and continuous blood sugar management at low maintenance costs without the pain caused by blood collection, enabling patients to enjoy quality life through proper treatment and management of diabetes. This is expected to increase the use of CGMS, which currently stands at only 5%. The research team also performed both the intravenous glucose tolerance test (IVGTT) and oral glucose tolerance test (OGTT) with the sensor implanted to swine and beagle in a controlled environment. The results of initial proof-of-concept in vivo experiment showed promising correlation between BGL and sensor frequency response, according to the research team.

“Present work is an effort for the realization of implantable electromagnetic-based sensor, which can be an alternate to enzyme-based or optical-based glucose sensor,” noted the research team. ‘The proposed implantable sensor has not only overcome the disadvantages of the existing continuous glucose monitoring systems (CGMS), such as short lifespan, but has also enhanced the blood glucose prediction accuracy.”

“Our proposed sensor and system are indeed in the early stage of development,” noted the research team. “Despite that, the proof-of-concept in vivo results show promising correlation between BGL and sensor frequency response. Indeed, the sensor shows the ability to track BGL trend.”

“For actual sensor implantation we must consider bio compatible packaging and foreign body reactions (FBR) for long term applications. In addition, improved sensor interface system is under development,” added the research team.

Related Links:
UNIST

New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
8-Channel Pipette
SAPPHIRE 20–300 µL
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more