LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

AI Combined with Molecule-Making Machine Could Make Complex Chemistry Automated and Accessible

By LabMedica International staff writers
Posted on 31 Oct 2022
Image: The team combined powerful AI and a molecule-making machine to find the best conditions for automated complex chemistry (Photo courtesy of University of Illinois at Urbana-Champaign)
Image: The team combined powerful AI and a molecule-making machine to find the best conditions for automated complex chemistry (Photo courtesy of University of Illinois at Urbana-Champaign)

Automated synthesis machines for proteins and nucleic acids such as DNA have revolutionized research and chemical manufacturing in those fields, but many chemicals of importance for pharmaceutical, clinical, manufacturing and materials applications are small molecules with complex structures. A team of researchers had earlier pioneered the development of simple chemical building blocks for small molecules. They had also developed an automated molecule-making machine that snaps together the buildings blocks to create a wide range of possible structures. Now, the team has combined artificial intelligence (AI), “building-block” chemistry and a molecule-making machine to find the best general reaction conditions for synthesizing chemicals important to biomedical and materials research – a finding that could speed innovation and drug discovery as well as make complex chemistry automated and accessible.

With the machine-generated optimized conditions, researchers at the University of Illinois at Urbana-Champaign (Champaign, IL, USA), the Polish Academy of Sciences’ Institute for Organic Chemistry (IOC PAS, Warsaw, Poland), and the University of Toronto (Toronto, ON, Canada) doubled the average yield of a special, hard-to-optimize type of reaction linking carbon atoms together in pharmaceutically important molecules. The researchers say their system provides a platform that also could be used to find general conditions for other classes of reactions and solutions for similarly complex problems. An automated approach with generalized conditions could help standardize how chemists make some products, addressing the problem of reproducibility.

Published studies reflect conditions that are popular or convenient, rather than the best, so a systematic approach that included diverse data and negative results was necessary, according to the researchers. First, the team ran the entire matrix of possible combinations using the building-block chemistry through an algorithm to group together similar reactions. Then, the AI sent instructions, inputted to a machine in the Molecule Maker Lab located in the Beckman Institute for Advanced Science and Technology, to produce representative reactions from each cluster. The information from those reactions fed back into the model; the AI learned from the data and ordered more experiments from the molecule machine.

The process identified conditions that doubled the average yield of a challenging class of reactions, called heteroaryl Suzuki-Miyaura coupling, crucial for many biological and materials-relevant compounds. The machine-learning process could also be applied to other broad areas of chemistry to find the best reaction conditions for other types of small molecules or even larger organic polymers, the researchers say.

“Generality is critical for automation, and thus making molecular innovation accessible even to nonchemists,” said study co-leader Dr. Martin D. Burke. “The challenge is the haystack of possible reaction conditions is astronomical, and the needle is hidden somewhere inside. By leveraging the power of artificial intelligence and building-block chemistry to create a feedback loop, we were able to shrink the haystack. And we found the needle.”

Related Links:
University of Illinois at Urbana-Champaign 
IOC PAS 
University of Toronto 

Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more