LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Biomolecule Detection Technology to Make Lab-on-a-Chip Devices Smaller, Faster

By LabMedica International staff writers
Posted on 20 Jul 2022
Image: World’s thinnest material used for same-time, same-position biomolecule isolation and sensing (Photo courtesy of Pexels)
Image: World’s thinnest material used for same-time, same-position biomolecule isolation and sensing (Photo courtesy of Pexels)

New research has overcome a major challenge to isolating and detecting molecules at the same time and at the same location in a microdevice. The work by scientists at the University of Massachusetts Amherst (Amherst, MA, USA) demonstrates an important advance in using graphene for electrokinetic biosample processing and analysis and could allow lab-on-a-chip devices to become smaller and achieve results faster.

“For the detection of biomolecules, we usually first have to isolate them in a complex medium in a device and then send them to another device or another spot in the same device for detection,” said Jinglei Ping, an assistant professor at the Mechanical and Industrial Engineering Department, who is also affiliated with the Institute of Applied Life Sciences. “Now we can isolate them and detect them at the same microscale spot in a microfluidic device at the same time.

“No one has ever demonstrated this before,” he continued. “This is owing to our use of graphene, a nanomaterial as thin as a single carbon atom, as microelectrodes in a microfluidic device. We found that, compared to typical inert-metal microelectrodes, the electrolysis stability for graphene microelectrodes is more than 1,000 times improved, making them ideal for high-performance electrokinetic analysis.”

Also, Ping added, since monolayer graphene is transparent, “we developed a three-dimensional multi-stream microfluidic strategy to microscopically detect the isolated molecules and calibrate the detection at the same time from a direction normal to the graphene microelectrodes.”

The new approach developed in the work paves the way to the creation of lab-on-a-chip devices of maximal time and size efficiencies, Ping said. Also, the approach is not limited to analyzing biomolecules and can potentially be used to separate, detect and stimulate microorganisms such as cells and bacteria.

Related Links:
University of Massachusetts Amherst 

Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic Hematology Analyzer
DH-800 Series
Gel Cards
DG Gel Cards

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more