LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Fluorescent DNA Label Reveals Nanoscopic Cancer Features

By LabMedica International staff writers
Posted on 15 Mar 2022
Print article
Image: Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features using a custom-built system on the Olympus IX71 Inverted Microscope (Photo courtesy of Fluorescence Microscopes)
Image: Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features using a custom-built system on the Olympus IX71 Inverted Microscope (Photo courtesy of Fluorescence Microscopes)

Recent advances in superresolution fluorescence nanoscopy have transformed biological imaging as it seamlessly combines nanoscale resolution with molecular specificity. It is now routinely used in basic biological studies to visualize molecular structure.

Among various types of superresolution microscopy techniques, stochastic optical reconstruction microscopy (STORM) stands out as one of the simplest yet most powerful superresolution microscopy systems because of its superior spatial resolution and the ability to use simple organic fluorophores.

Medical Bioengineers at the University of Pittsburgh (Pittsburgh, PA, USA) have developed a new fluorescent label that gives a clearer picture of how DNA architecture is disrupted in cancer cells. The findings could improve cancer diagnoses for patients and classification of future cancer risk. Inside the cell's nucleus, DNA strands are wound around proteins like beads on a string. Pathologists routinely use traditional light microscopes to visualize disruption to this DNA-protein complex, or chromatin, as a marker of cancer or precancerous lesions.

The scientists formulated a new label called Hoechst-Cy5 by combining the DNA-binding molecule Cy5 and a fluorescent dye called Hoechst with ideal blinking properties for superresolution microscopy. STORM images were acquired using our custom-built system on the Olympus IX71 inverted microscope (Olympus, Tokyo, Japan). After showing that the new label produced higher resolution images than other dyes, the team compared colorectal tissue from normal, precancerous and cancerous lesions. In normal cells, chromatin is densely packed, especially at the edges of the nucleus. Condensed DNA glows brightly because a higher density of labels emits a stronger signal, while loosely packed chromatin produces a dimmer signal.

The images showed that as cancer progresses, chromatin becomes less densely packed, and the compact structure at the nuclear border is severely disrupted. To see if chromatin structure could hold clues about future cancer risk, the investigators evaluated patients with Lynch syndrome, a heritable condition that increases the risk of several cancer types, including colon cancer. They looked at non-cancerous colorectal tissue from healthy people without Lynch syndrome and Lynch patients with or without a personal history of cancer. The differences were striking. In Lynch patients who previously had colon cancer, chromatin was much less condensed than in healthy samples, suggesting that chromatin disruption could be an early sign of cancer development, even in tissue that looks completely normal to pathologists.

Yang Liu, Ph.D., associate professor of medicine and bioengineering, and senior author of the study, said, “Early-stage lesions can have very different clinical outcomes. Some people develop cancer very quickly, and others stay at the precursor stage for a long time. Stratifying cancer risk is a major challenge in cancer prevention.” The study was published on March 4, 2022 in the journal Science Advances.

Related Links:
University of Pittsburgh 
Olympus 

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Mycoplasma Pneumoniae Virus Test
Mycoplasma Pneumoniae Virus Detection Kit
New
Respiratory Bacterial Panel
Real Respiratory Bacterial Panel 2

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.