LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Histological Criteria Predicts Lymphoma Transformation in Bone Marrow Biopsies

By LabMedica International staff writers
Posted on 16 Feb 2022
Print article
Image: Highly atypical cells in marrow examined for large cell transformation. Bone marrow core biopsies demonstrating (A) highly atypical cells including cells with prominent spindling of the nucleus and (B) cells with marked pleomorphism and/or multinucleation (Photo courtesy of Yale Medicine)
Image: Highly atypical cells in marrow examined for large cell transformation. Bone marrow core biopsies demonstrating (A) highly atypical cells including cells with prominent spindling of the nucleus and (B) cells with marked pleomorphism and/or multinucleation (Photo courtesy of Yale Medicine)

Large cell transformation (LCT) of indolent B-cell lymphomas, such as follicular lymphoma (FL) and chronic lymphocytic leukemia (CLL), signals a worse prognosis, at which point aggressive chemotherapy is initiated.

Although LCT is relatively straightforward to diagnose in lymph nodes, a marrow biopsy is often obtained first given its ease of procedure, low cost, and low morbidity. Criteria for morphologic evaluation of lymphoma transformation are not established in bone marrow biopsies.

Pathologists at the Yale Medicine (New Haven, CT, USA) and their colleagues studied the accuracy and reproducibility of a trained convolutional neural network in identifying LCT, in light of promising machine learning tools that may introduce greater objectivity to morphologic analysis. They retrospectively identified patients who had a diagnosis of FL or CLL who had undergone bone marrow biopsy for the clinical question of LCT.

They scored morphologic criteria and correlated results with clinical disease progression. In addition, whole slide scans were annotated into patches to train convolutional neural networks to discriminate between small and large tumor cells and to predict the patient's probability of transformation. All FL and CLL cases were scanned at ×40 magnification using a high-resolution Aperio scanner the Aperio ScanScope CS, (Aperio Technologies, Vista, CA, USA) and annotated with the digital pathology analysis software QuPath to define areas of maturing trilineage hematopoiesis, small cell lymphoma, and large cell lymphoma.

The investigators reported that using morphologic examination, the proportion of large lymphoma cells (≥10% in FL and ≥30% in CLL), chromatin pattern, distinct nucleoli, and proliferation index were significantly correlated with LCT in FL and CLL. Compared to pathologist-derived estimates, machine-generated quantification demonstrated better reproducibility and stronger correlation with final outcome data. Of the four models considered, the end-to-end convolutional neural network (CNN)-based model obtained the best results, with an AUROC of 0.857. This was followed by the logistic regression model trained on surface area estimates extracted from QuPath annotations (AUROC, 0.851).

The authors concluded that their histologic findings may serve as indications of LCT in bone marrow biopsies. The pathologist-augmented with machine system appeared to be the most predictive, arguing for greater efforts to validate and implement these tools to further enhance physician practice. The study was published in the February 2022 issue of the journal Archives of Pathology and Laboratory Medicine.

Related Links:
Yale Medicine 
Aperio Technologies 

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Troponin I Test
Quidel Triage Troponin I Test
New
Respiratory Bacterial Panel
Real Respiratory Bacterial Panel 2

Print article

Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Sekisui Diagnostics UK Ltd.