Serum and Plasma Choline Quantified by Clinical NMR- Analyzer
|
By LabMedica International staff writers Posted on 14 Dec 2021 |

Image: The Vantera Clinical Analyzer can identify and quantify concentrations of choline using NMR spectroscopy (Photo courtesy of American Association for Clinical Chemistry)
Gut microbiome-related metabolites, like trimethylamine-N-oxide (TMAO), betaine and choline are increasingly recognized as contributors to, as well as markers of, cardiometabolic and other chronic diseases. Gut microbiome mediated metabolism of phosphatidylcholine leads to the production of choline, which is then metabolized to either trimethylamine (TMA) or betaine.
Choline is important because it is a component of membrane phospholipids including phosphatidylcholine, the most abundant phospholipid in humans. Choline is also needed for methyl group metabolism, cholinergic neurotransmission as well as lipid and cholesterol transport and metabolism. A high-throughput nuclear magnetic resonance (NMR)–based assay to measure choline has been developed.
Scientists from the Laboratory Corporation of America Holdings (Morrisville, NC, USA) pooled de-identified residual clinical specimens that were pooled to enable the analytical validation studies. In addition, blood draws were performed when appropriate de-identified specimens were not available. Serum or plasma specimens were diluted on board the Vantera Clinical Analyzer (LipoScience Inc, Raleigh, NC, USA) with citrate/phosphate buffer to lower the pH to 5.3. Choline was quantified from the processed spectra using a proprietary multi-step deconvolution algorithm that resolves the choline region into its spectral components. A method comparison study was performed to compare choline concentrations determined by both NMR and liquid chromatography tandem mass spectrometry (LC-MS/MS), 1290 UHPLC system coupled to a 6495B QQQ mass spectrometer (Agilent Technologies, Santa Clara, CA, USA).
The investigators reported that Deming regression analysis comparing choline concentrations by NMR and mass spectrometry (n=28) exhibited a correlation coefficient of 0.998. The limit of quantification were determined to be 7.1 µmol/L in serum and 5.9 µmol/L in plasma. The coefficients of variation (%CV) for intra- and inter-assay precision ranged from 6.2–14.8% (serum) and 5.4–11.3% (plasma). Choline concentrations were lower in EDTA plasma by as much as 38% compared to serum, however, choline was less stable in serum compared to plasma. In a population of apparently healthy adults, the reference interval was <7.1–20.0 µmol/L (serum) and <5.9–13.1 µmol/L (plasma). Linearity was demonstrated well beyond these intervals. No interference was observed for a number of substances tested.
The authors concluded that the newly developed NMR-based assay exhibited good performance characteristics enabling high-throughput quantification of circulating choline for clinical use. While lower choline concentrations were observed in plasma compared to serum, choline was more stable in plasma. The study was published on December 4, 2021 in the journal Clinica Chimica Acta.
Related Links:
Laboratory Corporation of America Holdings
LipoScience Inc
Agilent Technologies
Choline is important because it is a component of membrane phospholipids including phosphatidylcholine, the most abundant phospholipid in humans. Choline is also needed for methyl group metabolism, cholinergic neurotransmission as well as lipid and cholesterol transport and metabolism. A high-throughput nuclear magnetic resonance (NMR)–based assay to measure choline has been developed.
Scientists from the Laboratory Corporation of America Holdings (Morrisville, NC, USA) pooled de-identified residual clinical specimens that were pooled to enable the analytical validation studies. In addition, blood draws were performed when appropriate de-identified specimens were not available. Serum or plasma specimens were diluted on board the Vantera Clinical Analyzer (LipoScience Inc, Raleigh, NC, USA) with citrate/phosphate buffer to lower the pH to 5.3. Choline was quantified from the processed spectra using a proprietary multi-step deconvolution algorithm that resolves the choline region into its spectral components. A method comparison study was performed to compare choline concentrations determined by both NMR and liquid chromatography tandem mass spectrometry (LC-MS/MS), 1290 UHPLC system coupled to a 6495B QQQ mass spectrometer (Agilent Technologies, Santa Clara, CA, USA).
The investigators reported that Deming regression analysis comparing choline concentrations by NMR and mass spectrometry (n=28) exhibited a correlation coefficient of 0.998. The limit of quantification were determined to be 7.1 µmol/L in serum and 5.9 µmol/L in plasma. The coefficients of variation (%CV) for intra- and inter-assay precision ranged from 6.2–14.8% (serum) and 5.4–11.3% (plasma). Choline concentrations were lower in EDTA plasma by as much as 38% compared to serum, however, choline was less stable in serum compared to plasma. In a population of apparently healthy adults, the reference interval was <7.1–20.0 µmol/L (serum) and <5.9–13.1 µmol/L (plasma). Linearity was demonstrated well beyond these intervals. No interference was observed for a number of substances tested.
The authors concluded that the newly developed NMR-based assay exhibited good performance characteristics enabling high-throughput quantification of circulating choline for clinical use. While lower choline concentrations were observed in plasma compared to serum, choline was more stable in plasma. The study was published on December 4, 2021 in the journal Clinica Chimica Acta.
Related Links:
Laboratory Corporation of America Holdings
LipoScience Inc
Agilent Technologies
Latest Clinical Chem. News
- Chemical Imaging Probe Could Track and Treat Prostate Cancer
- Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
- VOCs Show Promise for Early Multi-Cancer Detection
- Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
- Gold Nanoparticles to Improve Accuracy of Ovarian Cancer Diagnosis
- Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy
- Simple Non-Invasive Hair-Based Test Could Speed ALS Diagnosis
- Paper Strip Saliva Test Detects Elevated Uric Acid Levels Without Blood Draws
- Prostate Cancer Markers Based on Chemical Make-Up of Calcifications to Speed Up Detection
- Breath Test Could Help Detect Blood Cancers
- ML-Powered Gas Sensors to Detect Pathogens and AMR at POC
- Saliva-Based Cancer Detection Technology Eliminates Need for Complex Sample Preparation
- Skin Swabs Could Detect Parkinson’s Years Before Symptoms Appear
- New Clinical Chemistry Analyzer Designed to Meet Growing Demands of Modern Labs

- New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
- Pen-Like Tool Quickly and Non-Invasively Detects Opioids from Skin
Channels
Molecular Diagnostics
view channel
Simple Urine Test to Revolutionize Bladder Cancer Diagnosis and Treatment
Bladder cancer is one of the most common and deadly urological cancers and is marked by a high rate of recurrence. Diagnosis and follow-up still rely heavily on invasive cystoscopy or urine cytology, which... Read more
Blood Test to Enable Earlier and Simpler Detection of Liver Fibrosis
Persistent liver damage caused by alcohol misuse or viral infections can trigger liver fibrosis, a condition in which healthy tissue is gradually replaced by collagen fibers. Even after successful treatment... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
New Test Distinguishes Vaccine-Induced False Positives from Active HIV Infection
Since HIV was identified in 1983, more than 91 million people have contracted the virus, and over 44 million have died from related causes. Today, nearly 40 million individuals worldwide live with HIV-1,... Read more
Gene Signature Test Predicts Response to Key Breast Cancer Treatment
DK4/6 inhibitors paired with hormone therapy have become a cornerstone treatment for advanced HR+/HER2– breast cancer, slowing tumor growth by blocking key proteins that drive cell division.... Read more
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read moreMicrobiology
view channel
Rapid Diagnostic Test Matches Gold Standard for Sepsis Detection
Sepsis kills 11 million people worldwide every year and generates massive healthcare costs. In the USA and Europe alone, sepsis accounts for USD 100 billion in annual hospitalization expenses.... Read moreRapid POC Tuberculosis Test Provides Results Within 15 Minutes
Tuberculosis remains one of the world’s deadliest infectious diseases, and reducing new cases depends on identifying individuals with latent infection before it progresses. Current diagnostic tools often... Read more
Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read morePathology
view channel
Tunable Cell-Sorting Device Holds Potential for Multiple Biomedical Applications
Isolating rare cancer cells from blood is essential for diagnosing metastasis and guiding treatment decisions, but remains technically challenging. Many existing techniques struggle to balance accuracy,... Read moreAI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
Diagnosing blood disorders depends on recognizing subtle abnormalities in cell size, shape, and structure, yet this process is slow, subjective, and requires years of expert training. Even specialists... Read moreTechnology
view channel
Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Identifying which genetic variants actually cause disease remains one of the biggest challenges in genomic medicine. Each person carries tens of thousands of DNA changes, yet only a few meaningfully alter... Read more
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








