LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Breath Test Can Identify COVID-19 in Critically Ill Patients

By LabMedica International staff writers
Posted on 17 Nov 2021
Image: Breath Test Can Identify COVID-19 in Critically Ill Patients and Asymptomatic Individuals (Photo courtesy of Ohio State University Wexner Medical Center)
Image: Breath Test Can Identify COVID-19 in Critically Ill Patients and Asymptomatic Individuals (Photo courtesy of Ohio State University Wexner Medical Center)
The coronaviruses known to infect humans generally only caused mild upper respiratory tract infectious symptoms. They are also known to delay the innate immune response to infection, and they have affinity for primary epithelial cells

A common feature of respiratory viral infections is the release of inflammatory cytokines. These cytokines led to the production and release of volatile organic compounds (VOC), nitric oxide (NO), and ammonia (NH4). Novel breathalyzer technology utilizes a single selective, resistive chemosensor made of a catalytically active, semiconducting material, targeting NO and ammonia molecules in breath.

Bioengineers and other scientists associated with the Ohio State University Wexner Medical Center (Columbus, OH, USA) have developed a COVID-19 breathalyzer which is an electronic device that uses a single catalytically active, resistive sensor that is highly selective to NO. The sensitivity of the γ-phase tungsten trioxide (WO3) sensor to NO, selectivity and response in the presence of various interfering compounds have been demonstrated before and are shown here for the specific conditions of this study, simulating human exhaled breath having various concentrations of NO and of the most abundant VOCs in breath: acetone, isoprene, and ammonia.

The team followed 46 patients who were admitted to the intensive care unit (ICU) with acute respiratory failure that required mechanical ventilation. Half of the patients had an active COVID-19 infection and the remaining half did not. All patients had a PCR COVID-19 test when they were admitted to the unit. The scientists collected samples from the exhalation port of the ventilator in 1-liter breath bags (Tedlar bags, CEL Scientific, Cerritos, CA, USA) from the patients on day 1, 3, 7, and 10 of their inpatient stay. The breath bag samples were tested within four hours of sample collection in a laboratory.

The investigators reported that the breathalyzer detected high exhaled nitric oxide (NO) concentration with a distinctive pattern for patients with active COVID-19 pneumonia. The COVID-19 “breath print” has the pattern of the small Greek letter omega (ω). The “breath print” identified patients with COVID-19 pneumonia with 88% accuracy upon their admission to the ICU. Furthermore, the sensitivity index of the breath print (which scales with the concentration of the key biomarker ammonia) appears to correlate with duration of COVID-19 infection. The negative predictive value of the breathalyzer was excellent at 90%.

Matthew C. Exline, MD, a Pulmonologist and senior author of the study, said, “The gold standard for diagnosis of COVID-19 is a polymerase chain reaction (PCR) test that requires an uncomfortable nasal swab and time in a laboratory to process the sample and obtain the results. The breathalyzer test used in our study can detect COVID-19 within 15 seconds.”

The authors concluded that the use of breathalyzer technology to rapidly diagnose patients with respiratory infections has the potential to greatly improve our ability to rapidly screen both patients and asymptomatic individuals. This study is the first to show the practical application of this emerging technology in a homogenous group of patients with a single infection. The study was published on October 28, 2021 in the journal PLOS ONE.

Related Links:
Ohio State University Wexner Medical Center
CEL Scientific


New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Collection and Transport System
PurSafe Plus®
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more