LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Biomarkers Associated with Major Bleeding in Patients with Atrial Fibrillation

By LabMedica International staff writers
Posted on 16 Nov 2021
Image: The BioMark HD real-time Polymerase Chain reaction (PCR) platform (Photo courtesy of Fluidigm)
Image: The BioMark HD real-time Polymerase Chain reaction (PCR) platform (Photo courtesy of Fluidigm)
Atrial fibrillation (AF) is associated with a five-fold increased risk of thromboembolisms, mainly stroke, independently of other risk factors. Accurate assessment to balance the risk of stroke and systemic embolic events (S/SEE), against the risk of major bleeding is therefore an important therapeutic goal in the clinical management of these patients.

Age, prior hemorrhage, severe renal disease, and anemia (hemoglobin) have been independently associated with an increased risk of major bleeding in patients with AF. The use of different combinations of these mainly clinical variables has resulted in at least five validated risk scores for better prediction of bleeding events in patients with AF.

Medical Scientists at Uppsala University (Uppsala, Sweden) explored associations between a wide range of biomarkers and bleeding risk in patients with AF on oral anticoagulants (OAC). Biomarkers were analyzed in a random sample of 4,200 patients, 204 cases with major bleedings. The replication cohort included 344 cases with major bleeding and 1,024 random controls.

The plasma concentrations of high-sensitivity cTnT-hs, NT-proBNP, and GDF-15 were determined by Roche immunoassays using a Cobas Analytics e601 (Roche Diagnostics, Rotkreuz, Switzerland). Interleukin 6 (IL-6) was analyzed using the high-sensitivity sandwich ELISA immunoassay (R&D Systems Inc, Minneapolis, MN, USA) and Cystatin C with the ARCHITECT system ci8200 (Abbott Laboratories, Abbott Park, IL, USA) using the particle-enhanced turbidimetric immunoassay (PETIA) from Gentian Diagnostics ASA (Moss, Norway).

The proteomic analyses were performed with the high-throughput Proximity Extension Assay (PEA) technique using the Target 96 Multiplex CVD II, CVD III, and Inflammation panels (Olink Proteomics, Uppsala, Sweden), which together simultaneously measured 276 selected proteins in plasma potentially related to CVD and inflammation. The PEA technology uses pairs of antibodies equipped with DNA reporter molecules When binding to their correct targets, antibody pairs give rise to new DNA amplicons each ID-barcoding their respective antigens. The amplicons are subsequently quantified using the Fluidigm BioMark HD real-time PCR platform (Fluidigm, South San Francisco, CA, USA).

The investigators reported that out of 268 proteins, nine biomarkers were independently associated with bleeding in both cohorts. In the replication cohort a significant linear hazard ratios per interquartile range were confirmed for these biomarkers: cytokine GDF-15, cTnT-hs, osteopontin (OPN), ephrin type-B receptor 4 (EphB4), TNF-R1, TNF-R2, soluble urokinase plasminogen activator receptor (suPAR), TRAIL-R2, and osteoprotegerin (OPG).

The authors concluded that in patients with AF on OAC, GDF-15, cTnT-hs, and seven novel biomarkers were independently associated with major bleedings and reflect pathophysiologic processes of inflammation, apoptosis, oxidative stress, vascular calcification, coagulation, and fibrinolysis. Investigations of the utility of these markers to refine risk stratification and guide the management of patients at high risk of bleeding are warranted. The study was published on the November 2021 issue of the Journal of Thrombosis and Haemostasis.

Related Links:
Uppsala University
Roche Diagnostics
R&D Systems
Abbott Laboratories
Gentian Diagnostics
Olink Proteomics
Fluidigm


Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Automatic Hematology Analyzer
DH-800 Series

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more