NanoVelcro Cell Technology Applied in Diagnosis of Pregnancy Complications
By LabMedica International staff writers Posted on 02 Sep 2021 |

Image: The NanoVelcro device has been used to detect placenta accreta spectrum (PAS) disorders (Photo courtesy of University of California, Los Angeles)
Placenta accreta spectrum (PAS) disorders, including placenta accreta, placenta increta, and placenta percreta, are the consequences of abnormal implantation, or aberrant invasion and adherence of placental trophoblasts into the uterine myometrium.
Current diagnostic modalities for PAS, including serum analytes, ultrasonography, and magnetic resonance imaging (MRI), are effective but not always conclusive, and some options are not readily available in low resource settings. Circulating trophoblast cell clusters can be used for early detection of PAS disorders.
Medical Scientists at the University of California, Los Angeles (UCLA, Los Angeles, CA, USA) and their colleagues included in a study pregnant women aged from 18 to 45 years old with singleton intrauterine pregnancies, and gestational age (GA) between 6 and 40 weeks. The team analyzed blood samples from 168 pregnant individuals, divided between those with clinically confirmed PAS, placenta previa, or normal placentation and an additional 15 healthy non-pregnant female donors served as controls.
The investigators used the a cell isolation technology called NanoVelcro Chip developed by UCLA. NanoVelcro is a nanostructure-embedded microchip designed to capture and enrich specific target cells from a mixed sample. The samples were run through NanoVelcro Chips under optimized conditions and immunostained and were imaged using the Nikon Ni fluorescence microscope (Melville, NY, USA). Trophoblast-specific gene expression in placenta tissue was performed to validate the selected trophoblast-specific gene panel.
The team discovered a uniquely high prevalence of clustered circulating trophoblasts (cTB-clusters) in PAS and subsequently optimized the device to preserve the intactness of these clusters. The feasibility study on the enumeration of cTBs and cTB-clusters from 168 pregnant women demonstrates excellent diagnostic performance for distinguishing PAS from non-PAS. The combined cTB assay achieves an Area Under ROC Curve of 0.942 (throughout gestation) and 0.924 (early gestation) for distinguishing PAS from non-PAS. Overall, single cTBs are detected in the majority of pregnant women, with a detection rate of 98%, 85%, and 86% in the groups of PAS, placenta previa, and normal placentation, respectively.
Margareta D. Pisarska, MD, an Obstetrics and Gynecology Endocrinologist and co-author of the study, said, “In maternal health and delivery, we think of having a child and having a delivery as, overall a happy, healthy event. But in situations like this, these are very difficult times to try to manage through. And if we have a plan in place, schedule the delivery, have the right members on the team on board, have all the things prepared that should lead to a more scheduled controlled delivery.”
The authors concluded that the combination of cTBs and cTB-clusters captured on the NanoVelcro Chips for detecting PAS early in gestation will enable a promising quantitative assay to serve as a noninvasive test and also as a complement to ultrasonography to improve diagnostic accuracy for PAS early in gestation. The study was published on August 3, 2021 in the journal Nature Communications.
Related Links:
Nikon
University of California, Los Angeles
Current diagnostic modalities for PAS, including serum analytes, ultrasonography, and magnetic resonance imaging (MRI), are effective but not always conclusive, and some options are not readily available in low resource settings. Circulating trophoblast cell clusters can be used for early detection of PAS disorders.
Medical Scientists at the University of California, Los Angeles (UCLA, Los Angeles, CA, USA) and their colleagues included in a study pregnant women aged from 18 to 45 years old with singleton intrauterine pregnancies, and gestational age (GA) between 6 and 40 weeks. The team analyzed blood samples from 168 pregnant individuals, divided between those with clinically confirmed PAS, placenta previa, or normal placentation and an additional 15 healthy non-pregnant female donors served as controls.
The investigators used the a cell isolation technology called NanoVelcro Chip developed by UCLA. NanoVelcro is a nanostructure-embedded microchip designed to capture and enrich specific target cells from a mixed sample. The samples were run through NanoVelcro Chips under optimized conditions and immunostained and were imaged using the Nikon Ni fluorescence microscope (Melville, NY, USA). Trophoblast-specific gene expression in placenta tissue was performed to validate the selected trophoblast-specific gene panel.
The team discovered a uniquely high prevalence of clustered circulating trophoblasts (cTB-clusters) in PAS and subsequently optimized the device to preserve the intactness of these clusters. The feasibility study on the enumeration of cTBs and cTB-clusters from 168 pregnant women demonstrates excellent diagnostic performance for distinguishing PAS from non-PAS. The combined cTB assay achieves an Area Under ROC Curve of 0.942 (throughout gestation) and 0.924 (early gestation) for distinguishing PAS from non-PAS. Overall, single cTBs are detected in the majority of pregnant women, with a detection rate of 98%, 85%, and 86% in the groups of PAS, placenta previa, and normal placentation, respectively.
Margareta D. Pisarska, MD, an Obstetrics and Gynecology Endocrinologist and co-author of the study, said, “In maternal health and delivery, we think of having a child and having a delivery as, overall a happy, healthy event. But in situations like this, these are very difficult times to try to manage through. And if we have a plan in place, schedule the delivery, have the right members on the team on board, have all the things prepared that should lead to a more scheduled controlled delivery.”
The authors concluded that the combination of cTBs and cTB-clusters captured on the NanoVelcro Chips for detecting PAS early in gestation will enable a promising quantitative assay to serve as a noninvasive test and also as a complement to ultrasonography to improve diagnostic accuracy for PAS early in gestation. The study was published on August 3, 2021 in the journal Nature Communications.
Related Links:
Nikon
University of California, Los Angeles
Latest Technology News
- Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
- Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
- Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
- Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
- Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
- Smartphones Could Diagnose Diseases Using Infrared Scans
- Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
- 3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
- POC Paper-Based Sensor Platform to Transform Cardiac Diagnostics
- Study Explores Impact of POC Testing on Future of Diagnostics
- Low-Cost, Fast Response Sensor Enables Early and Accurate Detection of Lung Cancer
- Nanotechnology For Cervical Cancer Diagnosis Could Replace Invasive Pap Smears
- Lab-On-Chip Platform to Expedite Cancer Diagnoses
- Biosensing Platform Simultaneously Detects Vitamin C and SARS-CoV-2
- New Lens Method Analyzes Tears for Early Disease Detection
- FET-Based Sensors Pave Way for Portable Diagnostic Devices Capable of Detecting Multiple Diseases
Channels
Clinical Chemistry
view channelMass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more
First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read more
Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse
Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read moreMolecular Diagnostics
view channel
First-in-Class Diagnostic Blood Test Detects Axial Spondyloarthritis
Axial spondyloarthritis (axSpA) is a chronic inflammatory autoimmune condition that typically affects individuals during their most productive years, with symptoms often emerging before the age of 45.... Read more
New Molecular Label to Help Develop Simpler and Faster Tuberculosis Tests
Tuberculosis (TB), the deadliest infectious disease globally, is responsible for infecting an estimated 10 million people each year and causing over 1 million deaths annually. While chest X-rays and molecular... Read more
Biomarker Discovery Paves Way for Blood Tests to Detect and Treat Osteoarthritis
The number of individuals affected by osteoarthritis is projected to exceed 1 billion by 2050. The primary risk factor for this common, often painful chronic joint condition is aging, and, like aging itself,... Read moreHematology
view channel
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read more
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, led to 1.25 million deaths in 2023, with 13% of those occurring in people living with HIV. The current primary diagnostic method for... Read more
New Test Diagnoses Bacterial Meningitis Quickly and Accurately
Bacterial meningitis is a potentially fatal condition, with one in six patients dying and half of the survivors experiencing lasting symptoms. Therefore, rapid diagnosis and treatment are critical.... Read moreTechnology
view channel
Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more