Blood Biomarker Discovered for Autism Spectrum Disorder
|
By LabMedica International staff writers Posted on 11 Mar 2021 |

Image: The principle of SOMAscan Assay that allows for the simultaneous detection of 1,300 human proteins using SOMAmer (Slow Off-rate Modified Aptamer) protein-binding reagents (Photo courtesy of SomaLogic).
Autism spectrum disorder (ASD), a heterogeneous neurodevelopmental disorder, is characterized by deficits in social communication and social interaction, with restricted, repetitive patterns of behavior, interests, or activities. ASD impacts at least one out of every 59 children in the USA, although this is likely an underestimation.
Many blood-based biomarker candidates have been investigated, including neurotransmitters, cytokines, and markers of mitochondrial dysfunction, oxidative stress, and impaired methylation. However, given the prevalence of ASD, the use of machine learning to incorporate demographic and clinical data into the analysis could more powerfully examine disease status and symptom severity.
Medical Scientists at the Johnson Center for Child Health and Development (Austin, TX, USA) enrolled a total of 154 male pediatric subjects. The ASD group was comprised of 76 subjects with a mean age of 5.6 years ± 1.7 years. The typically developing (TD) group was comprised of 78 subjects with a mean age of 5.7 years ± 2.0 years. The ethnic breakdown was as follows: 73 White/Caucasian, 32 Hispanic/Latino, 17 African American/Black, five Asian or Pacific Islander, 23 multiple ethnicities or other, and four not reported.
A fasting blood draw was performed on ASD and TD subjects between the hours of 8–10 AM in a 3.5 mL Serum Separation Tube using standard venipuncture technique. The SOMAScan platform 1.3k was used for analysis, and assays were run (SomaLogic, Boulder, CO, USA). SOMAmer aptamer reagents consist of short single-stranded DNA sequences with ‘protein-like’ appendages that allow tight and specific binding to protein targets. More than 1,100 proteins were examined using the SomaLogic protein analysis platform. A panel of nine proteins was identified as optimal for predicting ASD using three computational methods. The scientists then evaluated the biomarker panel for quality using machine learning methods.
The team reported that five proteins were common to all three prediction models used: mitogen-activated protein kinase 14 (MAPK14), immunoglobulin D (IgD), dermatopontin (DERM), ephrin type-B receptor 2 (EPHB2), and soluble urokinase-type plasminogen activator receptor (suPAR). These five proteins were defined as core proteins. Four proteins providing additive power were combined with the five core proteins, and together, the nine proteins resulted in an AUC of 86% (sensitivity 83%; specificity 84%). These proteins have pathway significance related to a number of processes, including negative regulation of CD8+, alpha-beta T cell proliferation, immune response, neuron projection retraction, MAPK14 activity, and glutamate receptor signaling, all of which have previously been associated with ASD.
Dwight German, PhD, a Professor of Psychiatry and senior author of the study, said, “The more significantly affected the child is, the higher or lower than normal the blood biomarker is. Ideally, there will be a day when a child is identified using blood biomarkers as being at risk for developing ASD and therapies can be started immediately. That would help the child develop skills to optimize their communication and learning.”
The authors concluded that all nine proteins were significantly different in ASD compared with TD boys, and were significantly correlated with ASD severity as measured by Autism Diagnostic Observation Schedule (ADOS) total scores. Using machine learning methods, a panel of serum proteins was identified that may be useful as a blood biomarker for ASD in boys. The study was published on February 24, 2021 in the journal PLOS ONE.
Related Links:
Johnson Center for Child Health and Development
SomaLogic
Many blood-based biomarker candidates have been investigated, including neurotransmitters, cytokines, and markers of mitochondrial dysfunction, oxidative stress, and impaired methylation. However, given the prevalence of ASD, the use of machine learning to incorporate demographic and clinical data into the analysis could more powerfully examine disease status and symptom severity.
Medical Scientists at the Johnson Center for Child Health and Development (Austin, TX, USA) enrolled a total of 154 male pediatric subjects. The ASD group was comprised of 76 subjects with a mean age of 5.6 years ± 1.7 years. The typically developing (TD) group was comprised of 78 subjects with a mean age of 5.7 years ± 2.0 years. The ethnic breakdown was as follows: 73 White/Caucasian, 32 Hispanic/Latino, 17 African American/Black, five Asian or Pacific Islander, 23 multiple ethnicities or other, and four not reported.
A fasting blood draw was performed on ASD and TD subjects between the hours of 8–10 AM in a 3.5 mL Serum Separation Tube using standard venipuncture technique. The SOMAScan platform 1.3k was used for analysis, and assays were run (SomaLogic, Boulder, CO, USA). SOMAmer aptamer reagents consist of short single-stranded DNA sequences with ‘protein-like’ appendages that allow tight and specific binding to protein targets. More than 1,100 proteins were examined using the SomaLogic protein analysis platform. A panel of nine proteins was identified as optimal for predicting ASD using three computational methods. The scientists then evaluated the biomarker panel for quality using machine learning methods.
The team reported that five proteins were common to all three prediction models used: mitogen-activated protein kinase 14 (MAPK14), immunoglobulin D (IgD), dermatopontin (DERM), ephrin type-B receptor 2 (EPHB2), and soluble urokinase-type plasminogen activator receptor (suPAR). These five proteins were defined as core proteins. Four proteins providing additive power were combined with the five core proteins, and together, the nine proteins resulted in an AUC of 86% (sensitivity 83%; specificity 84%). These proteins have pathway significance related to a number of processes, including negative regulation of CD8+, alpha-beta T cell proliferation, immune response, neuron projection retraction, MAPK14 activity, and glutamate receptor signaling, all of which have previously been associated with ASD.
Dwight German, PhD, a Professor of Psychiatry and senior author of the study, said, “The more significantly affected the child is, the higher or lower than normal the blood biomarker is. Ideally, there will be a day when a child is identified using blood biomarkers as being at risk for developing ASD and therapies can be started immediately. That would help the child develop skills to optimize their communication and learning.”
The authors concluded that all nine proteins were significantly different in ASD compared with TD boys, and were significantly correlated with ASD severity as measured by Autism Diagnostic Observation Schedule (ADOS) total scores. Using machine learning methods, a panel of serum proteins was identified that may be useful as a blood biomarker for ASD in boys. The study was published on February 24, 2021 in the journal PLOS ONE.
Related Links:
Johnson Center for Child Health and Development
SomaLogic
Latest Clinical Chem. News
- New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
- Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
- Study Compares Analytical Performance of Quantitative Hepatitis B Surface Antigen Assays
- Blood Test Could Predict and Identify Early Relapses in Myeloma Patients
- Compact Raman Imaging System Detects Subtle Tumor Signals
- Noninvasive Blood-Glucose Monitoring to Replace Finger Pricks for Diabetics
- POC Breath Diagnostic System to Detect Pneumonia-Causing Pathogens
- Online Tool Detects Drug Exposure Directly from Patient Samples
- Chemical Imaging Probe Could Track and Treat Prostate Cancer
- Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
- VOCs Show Promise for Early Multi-Cancer Detection
- Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
- Gold Nanoparticles to Improve Accuracy of Ovarian Cancer Diagnosis
- Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy
- Simple Non-Invasive Hair-Based Test Could Speed ALS Diagnosis
- Paper Strip Saliva Test Detects Elevated Uric Acid Levels Without Blood Draws
Channels
Molecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







