A Novel Liquid Biopsy Technique for Brain Tumor Diagnosis
|
By LabMedica International staff writers Posted on 27 Oct 2020 |

Image: Digital droplet PCR (ddPCR): schematic showing oil droplets containing fluorescent PCR target molecules (Photo courtesy of Wikimedia Commons)
A minimally invasive liquid biopsy technique enables diagnosis of glioma, the most common type of brain tumor, by PCR analysis of an easily obtained blood plasma sample.
Detection of TERT (Telomerase reverse transcriptase) promoter mutations (C228T, C250T) in circulating cell free DNA (cfDNA) has been successful for some systemic cancers but has not been demonstrated in gliomas, despite the high prevalence of these mutations in glioma tissue (they are in more than 60% of all gliomas and in 80% of all high-grade gliomas, the most aggressive and life-threatening type). The liquid biopsy approach for brain tumors is complicated, as brain tumor DNA is shed into the bloodstream at much lower levels than that of any other type of tumors.
To improve this situation, investigators at Massachusetts General Hospital (Boston, USA) developed a novel digital droplet PCR assay that incorporated features to improve sensitivity and allowed for the simultaneous detection and longitudinal monitoring of two TERT promoter mutations (C228T and C250T) in cfDNA from the plasma of glioma patients.
Droplet digital PCR (ddPCR) is a method of dPCR in which a 20 microliter sample reaction including assay primers and either Taqman probes or an intercalating dye, is divided into about 20,000 nanoliter-sized oil droplets through a water-oil emulsion technique, thermocycled to endpoint in a 96-well PCR plate, and fluorescence amplitude read for all droplets in each sample well in a droplet flow cytometer.
Results revealed that in baseline performance in tumor tissue, the assay had perfect concordance with an independently performed clinical pathology laboratory assessment of TERT promoter mutations in the same tumor samples. Extending to matched plasma samples, the investigators detected TERT mutations in both discovery and blinded multi-institution validation cohorts with an overall sensitivity of 62.5% and a specificity of 90% compared to the gold standard tumor tissue-based detection of TERT mutations. Upon longitudinal monitoring in five patients, they reported that peripheral TERT mutant allele frequency reflected the clinical course of the disease with levels decreasing after surgical intervention and therapy and increasing with tumor progression.
"Liquid biopsy is particularly challenging in brain tumors because mutant DNA is shed into the bloodstream at much lower level than any other types of tumors," said contributing author Dr. Leonora Balaj, investigator in neurosurgery at Massachusetts General Hospital. "By “supercharging” our ddPCR assay with novel technical improvements, we showed for the first time that the most prevalent mutation in malignant gliomas can be detected in blood, opening a new landscape for detection and monitoring of the tumors. The test is easy to use, quick, and low cost, and could be performed in most laboratories. Importantly, the test can also be used to follow the course of disease."
The glioma liquid biopsy paper was published in the October 13, 2020, online edition of the journal Clinical Cancer Research.
Related Links:
Massachusetts General Hospital
Detection of TERT (Telomerase reverse transcriptase) promoter mutations (C228T, C250T) in circulating cell free DNA (cfDNA) has been successful for some systemic cancers but has not been demonstrated in gliomas, despite the high prevalence of these mutations in glioma tissue (they are in more than 60% of all gliomas and in 80% of all high-grade gliomas, the most aggressive and life-threatening type). The liquid biopsy approach for brain tumors is complicated, as brain tumor DNA is shed into the bloodstream at much lower levels than that of any other type of tumors.
To improve this situation, investigators at Massachusetts General Hospital (Boston, USA) developed a novel digital droplet PCR assay that incorporated features to improve sensitivity and allowed for the simultaneous detection and longitudinal monitoring of two TERT promoter mutations (C228T and C250T) in cfDNA from the plasma of glioma patients.
Droplet digital PCR (ddPCR) is a method of dPCR in which a 20 microliter sample reaction including assay primers and either Taqman probes or an intercalating dye, is divided into about 20,000 nanoliter-sized oil droplets through a water-oil emulsion technique, thermocycled to endpoint in a 96-well PCR plate, and fluorescence amplitude read for all droplets in each sample well in a droplet flow cytometer.
Results revealed that in baseline performance in tumor tissue, the assay had perfect concordance with an independently performed clinical pathology laboratory assessment of TERT promoter mutations in the same tumor samples. Extending to matched plasma samples, the investigators detected TERT mutations in both discovery and blinded multi-institution validation cohorts with an overall sensitivity of 62.5% and a specificity of 90% compared to the gold standard tumor tissue-based detection of TERT mutations. Upon longitudinal monitoring in five patients, they reported that peripheral TERT mutant allele frequency reflected the clinical course of the disease with levels decreasing after surgical intervention and therapy and increasing with tumor progression.
"Liquid biopsy is particularly challenging in brain tumors because mutant DNA is shed into the bloodstream at much lower level than any other types of tumors," said contributing author Dr. Leonora Balaj, investigator in neurosurgery at Massachusetts General Hospital. "By “supercharging” our ddPCR assay with novel technical improvements, we showed for the first time that the most prevalent mutation in malignant gliomas can be detected in blood, opening a new landscape for detection and monitoring of the tumors. The test is easy to use, quick, and low cost, and could be performed in most laboratories. Importantly, the test can also be used to follow the course of disease."
The glioma liquid biopsy paper was published in the October 13, 2020, online edition of the journal Clinical Cancer Research.
Related Links:
Massachusetts General Hospital
Latest Molecular Diagnostics News
- Blood Test Uses Cell-Free DNA to Detect ALS Faster and More Accurately
- Multi-Cancer Early Detection Blood Test Increases Cancer Detection
- Portable Label-Free Device Tracks Alzheimer's Disease in Real Time
- Liquid Biopsy Test Enables Early Detection of ICI-Related Myocarditis
- Rapid POC Diagnostic Test Detects Asymptomatic Malaria Cases
- Improved DNA Sequencing Tool Uncovers Hidden Mutations Driving Cancer
- Newborn Genomic Screening Enables More Lifesaving Diagnoses
- Blood Protein Tests Could Identify Distinct Molecular Fingerprints of Multiple Diseases
- Interstitial Lung Disease Test Could Identify Patients Before Symptoms Appear
- Genomic-First Approach Identifies Rare Genetic Disorders Earlier
- Simple Blood Test Could Reveal Kidney Disease Earlier
- Revolutionary Blood Test Accurately Diagnoses Chronic Fatigue Syndrome
- Stool-Based DNA Testing Leads to Timely Colonoscopy
- Groundbreaking Tool Improves Genetic Testing Accuracy
- Biomarker Blood Test Could Predict Development of Long COVID
- Polygenic Risk Score Blood Test Predicts Future Breast Cancer
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreHematology
view channel
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection
Lung transplant recipients face a significant risk of rejection and often require routine biopsies to monitor graft health, yet assessing the same biopsy sample can be highly inconsistent among pathologists.... Read more
Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer
High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more
Luminescent Probe Measures Immune Cell Activity in Real Time
The human immune system plays a vital role in defending against disease, but its activity must be precisely monitored to ensure effective treatment in cancer therapy, autoimmune disorders, and organ transplants.... Read more
Blood-Based Immune Cell Signatures Could Guide Treatment Decisions for Critically Ill Patients
When a patient enters the emergency department in critical condition, clinicians must rapidly decide whether the patient has an infection, whether it is bacterial or viral, and whether immediate treatment... Read moreMicrobiology
view channel
Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
Candida bloodstream infections are a growing global health threat, causing an estimated 6 million cases and 3.8 million deaths annually. Hospitals are particularly vulnerable, as weakened patients after... Read more
Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
Sepsis is a life-threatening condition that occurs when the body’s response to infection spirals out of control, damaging organs and leading to critical illness. Patients often arrive at intensive care... Read morePathology
view channel
AI Improves Cervical Cancer Screening in Low-Resource Settings
Access to cervical cancer screening in low- and middle-income countries remains limited, leaving many women without early detection for this life-threatening disease. The lack of access to laboratories,... Read more
New Multi-Omics Tool Illuminates Cancer Progression
Tracking how cancers evolve into more aggressive and therapy-resistant forms has long been a challenge for researchers. Many current tools can only capture limited genetic information from tumor samples,... Read moreTechnology
view channel
Viral Biosensor Test Simultaneously Detects Hepatitis and HIV
Globally, over 300 million people live with Hepatitis B and C, and 40 million with HIV, according to WHO estimates. Diagnosing bloodborne viruses such as HIV and Hepatitis B and C remains challenging in... Read more
Acoustofluidic Device to Transform Point-Of-Care sEV-Based Diagnostics
Rapid and sensitive detection of small extracellular vesicles (sEVs)—key biomarkers in cancer and organ health monitoring—remains challenging due to the need for multiple preprocessing steps and bulky... Read moreIndustry
view channel
Advanced Instruments Merged Under Nova Biomedical Name
Advanced Instruments (Norwood, MA, USA) and Nova Biomedical (Waltham, MA, USA) are now officially doing business under a single, unified brand. This transformation is expected to deliver greater value... Read more







