A Novel Liquid Biopsy Technique for Brain Tumor Diagnosis
|
By LabMedica International staff writers Posted on 27 Oct 2020 |

Image: Digital droplet PCR (ddPCR): schematic showing oil droplets containing fluorescent PCR target molecules (Photo courtesy of Wikimedia Commons)
A minimally invasive liquid biopsy technique enables diagnosis of glioma, the most common type of brain tumor, by PCR analysis of an easily obtained blood plasma sample.
Detection of TERT (Telomerase reverse transcriptase) promoter mutations (C228T, C250T) in circulating cell free DNA (cfDNA) has been successful for some systemic cancers but has not been demonstrated in gliomas, despite the high prevalence of these mutations in glioma tissue (they are in more than 60% of all gliomas and in 80% of all high-grade gliomas, the most aggressive and life-threatening type). The liquid biopsy approach for brain tumors is complicated, as brain tumor DNA is shed into the bloodstream at much lower levels than that of any other type of tumors.
To improve this situation, investigators at Massachusetts General Hospital (Boston, USA) developed a novel digital droplet PCR assay that incorporated features to improve sensitivity and allowed for the simultaneous detection and longitudinal monitoring of two TERT promoter mutations (C228T and C250T) in cfDNA from the plasma of glioma patients.
Droplet digital PCR (ddPCR) is a method of dPCR in which a 20 microliter sample reaction including assay primers and either Taqman probes or an intercalating dye, is divided into about 20,000 nanoliter-sized oil droplets through a water-oil emulsion technique, thermocycled to endpoint in a 96-well PCR plate, and fluorescence amplitude read for all droplets in each sample well in a droplet flow cytometer.
Results revealed that in baseline performance in tumor tissue, the assay had perfect concordance with an independently performed clinical pathology laboratory assessment of TERT promoter mutations in the same tumor samples. Extending to matched plasma samples, the investigators detected TERT mutations in both discovery and blinded multi-institution validation cohorts with an overall sensitivity of 62.5% and a specificity of 90% compared to the gold standard tumor tissue-based detection of TERT mutations. Upon longitudinal monitoring in five patients, they reported that peripheral TERT mutant allele frequency reflected the clinical course of the disease with levels decreasing after surgical intervention and therapy and increasing with tumor progression.
"Liquid biopsy is particularly challenging in brain tumors because mutant DNA is shed into the bloodstream at much lower level than any other types of tumors," said contributing author Dr. Leonora Balaj, investigator in neurosurgery at Massachusetts General Hospital. "By “supercharging” our ddPCR assay with novel technical improvements, we showed for the first time that the most prevalent mutation in malignant gliomas can be detected in blood, opening a new landscape for detection and monitoring of the tumors. The test is easy to use, quick, and low cost, and could be performed in most laboratories. Importantly, the test can also be used to follow the course of disease."
The glioma liquid biopsy paper was published in the October 13, 2020, online edition of the journal Clinical Cancer Research.
Related Links:
Massachusetts General Hospital
Detection of TERT (Telomerase reverse transcriptase) promoter mutations (C228T, C250T) in circulating cell free DNA (cfDNA) has been successful for some systemic cancers but has not been demonstrated in gliomas, despite the high prevalence of these mutations in glioma tissue (they are in more than 60% of all gliomas and in 80% of all high-grade gliomas, the most aggressive and life-threatening type). The liquid biopsy approach for brain tumors is complicated, as brain tumor DNA is shed into the bloodstream at much lower levels than that of any other type of tumors.
To improve this situation, investigators at Massachusetts General Hospital (Boston, USA) developed a novel digital droplet PCR assay that incorporated features to improve sensitivity and allowed for the simultaneous detection and longitudinal monitoring of two TERT promoter mutations (C228T and C250T) in cfDNA from the plasma of glioma patients.
Droplet digital PCR (ddPCR) is a method of dPCR in which a 20 microliter sample reaction including assay primers and either Taqman probes or an intercalating dye, is divided into about 20,000 nanoliter-sized oil droplets through a water-oil emulsion technique, thermocycled to endpoint in a 96-well PCR plate, and fluorescence amplitude read for all droplets in each sample well in a droplet flow cytometer.
Results revealed that in baseline performance in tumor tissue, the assay had perfect concordance with an independently performed clinical pathology laboratory assessment of TERT promoter mutations in the same tumor samples. Extending to matched plasma samples, the investigators detected TERT mutations in both discovery and blinded multi-institution validation cohorts with an overall sensitivity of 62.5% and a specificity of 90% compared to the gold standard tumor tissue-based detection of TERT mutations. Upon longitudinal monitoring in five patients, they reported that peripheral TERT mutant allele frequency reflected the clinical course of the disease with levels decreasing after surgical intervention and therapy and increasing with tumor progression.
"Liquid biopsy is particularly challenging in brain tumors because mutant DNA is shed into the bloodstream at much lower level than any other types of tumors," said contributing author Dr. Leonora Balaj, investigator in neurosurgery at Massachusetts General Hospital. "By “supercharging” our ddPCR assay with novel technical improvements, we showed for the first time that the most prevalent mutation in malignant gliomas can be detected in blood, opening a new landscape for detection and monitoring of the tumors. The test is easy to use, quick, and low cost, and could be performed in most laboratories. Importantly, the test can also be used to follow the course of disease."
The glioma liquid biopsy paper was published in the October 13, 2020, online edition of the journal Clinical Cancer Research.
Related Links:
Massachusetts General Hospital
Latest Molecular Diagnostics News
- Simultaneous Analysis of Three Biomarker Tests Detects Elevated Heart Disease Risk Earlier
- New Biomarker Panel to Improve Heart Failure Diagnosis in Women
- Dual Blood Biomarkers Improve ALS Diagnostic Accuracy
- Automated Test Distinguishes Dengue from Acute Fever-Causing Illnesses In 18 Minutes
- High-Sensitivity Troponin I Assay Aids in Diagnosis of Myocardial Infarction
- Fast Low-Cost Alzheimer’s Tests Could Detect Disease in Early and Silent Stages
- Further Investigation of FISH-Negative Tests for Renal Cell Carcinoma Improves Diagnostic Accuracy
- First Direct Measurement of Dementia-Linked Proteins to Enable Early Alzheimer’s Detection
- New Diagnostic Method Detects Pneumonia at POC in Low-Resource Settings
- Blood Immune Cell Analysis Detects Parkinson’s Before Symptoms Appear
- New Diagnostic Marker for Ovarian Cancer to Enable Early Disease Detection

- Urine Test Detects Early Stage Pancreatic Cancer
- Genomic Test Could Reduce Lymph Node Biopsy Surgery in Melanoma Patients
- Urine Test Could Replace Painful Kidney Biopsies for Lupus Patients
- Blood Test Guides Post-Surgical Immunotherapy for Muscle-Invasive Bladder Cancer
- Mitochondrial DNA Mutations from Kidney Stressors Could Predict Future Organ Decline
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreHematology
view channel
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read moreMicrobiology
view channel
15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read morePathology
view channel
AI Tool Improves Accuracy of Skin Cancer Detection
Diagnosing melanoma accurately in people with darker skin remains a longstanding challenge. Many existing artificial intelligence (AI) tools detect skin cancer more reliably in lighter skin tones, often... Read more
Highly Sensitive Imaging Technique Detects Myelin Damage
Damage to myelin—the insulating layer that helps brain cells function efficiently—is a hallmark of many neurodegenerative diseases, age-related decline, and traumatic injuries. However, studying this damage... Read moreTechnology
view channel
AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
Detecting lung cancer early remains one of the biggest challenges in oncology, largely because current tools are invasive, expensive, or unable to identify the disease in its earliest phases.... Read more
AI Model Achieves Breakthrough Accuracy in Ovarian Cancer Detection
Early diagnosis of ovarian cancer remains one of the toughest challenges in women’s health. Traditional tools such as the Risk of Ovarian Malignancy Algorithm (ROMA) can struggle to distinguish between... Read more
Portable Biosensor Diagnoses Psychiatric Disorders Using Saliva Samples
Early diagnosis of psychiatric disorders such as depression, schizophrenia, and bipolar disorder remains one of medicine’s most pressing challenges. Current diagnostic methods rely heavily on clinical... Read more
Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement
Sorting different cell types—such as cancerous versus healthy or live versus dead cells—is a critical task in biology and medicine. However, conventional methods often require labeling, chemical exposure,... Read moreIndustry
view channel
Co-Diagnostics Forms New Business Unit to Develop AI-Powered Diagnostics
Co-Diagnostics, Inc. (Salt Lake City, UT, USA) has formed a new artificial intelligence (AI) business unit to integrate the company's existing and planned AI applications into its Co-Dx Primer Ai platform.... Read more








