Smartphone Microscopic Method Detects Cryptosporidium and Giardia
By LabMedica International staff writers Posted on 30 Sep 2020 |

Image: Cryptosporidium oocysts and the larger Giardia cysts stained by Crypto/Giardia IFA kit (Photo courtesy of Cellabs).
Food and water-borne illness arising from the consumption of contaminated food and water are serious health hazards globally. Cryptosporidium and Giardia are the major food and water‒borne parasites. The infection occurs mainly by (oo)cyst phase of the parasites.
Several highly sensitive and specific methods have been described to detect Giardia cyst and Cryptosporidium oocyst in food, water, and fecal samples. Commonly used approaches are polymerase chain reaction, flow cytometry, and optical microscopic examination. However, these techniques need a good laboratory facility, well trained user and are expensive.
Scientists at the Kathmandu Institute of Applied Sciences (Kathmandu, Nepal) developed a smartphone based microscopic assay method to screen (oo)cysts of Cryptosporidium and Giardia contamination of vegetable and water samples. The method consisting of a ball lens of 1 mm diameter, white LED as illumination source and Lugols's iodine staining provided magnification and contrast capable of distinguishing (oo)cysts of Cryptosporidium and Giardia. The analytical performance of the method was tested by spike recovery studies.
Ten microliters of concentrated sample were stained with 10 μL of diluted Lugol's iodine (1:2 in water) and subsequently loaded into hemocytometer. The sample was incubated for six minutes. The (oo)cysts were screened and enumerated in four quadrants of the hemocytometer under smartphone microscope. The cysts on the same hemocytometer were simultaneously counted by Trinocular brightfield microscope (Amscope, Irvine, CA, USA). Triplicate measurement was made for each concentrated suspension. The spiked samples were also examined with a fluorescent microscope (Labomed Inc, Los Angeles, CA, USA).
The team tested the smartphone microscope system for detecting (oo)cysts on seven types of vegetable (n = 196) and river water (n = 18) samples. They reported that 42% vegetable and 39% water samples were found to be contaminated with Cryptosporidium oocyst. Similarly, 31% vegetable and 33% water samples were contaminated with Giardia cyst. The recovery of Giardia ranged from 10.2 ± 4.0% in cabbage to 37.6 ± 2.4% in water and recovery of Cryptosporidium ranged from 26.8 ± 10.3% in cabbage to 49.2 ± 10.9% in tomato using smartphone microscope measurement.
The authors concluded that the smartphone based microscopic assay can be a low-cost alternative for screening of (oo)cyst of Cryptosporidium and Giardia in resource limited settings. The approximate cost of the microscope (excluding the cost of smartphone) is ~ USD 15. This method also has the potential to be used in clinical settings. The study was published on September 8, 2020 in the journal PLOS Neglected Tropical Diseases.
Related Links:
Kathmandu Institute of Applied Sciences
Amscope
Labomed Inc
Several highly sensitive and specific methods have been described to detect Giardia cyst and Cryptosporidium oocyst in food, water, and fecal samples. Commonly used approaches are polymerase chain reaction, flow cytometry, and optical microscopic examination. However, these techniques need a good laboratory facility, well trained user and are expensive.
Scientists at the Kathmandu Institute of Applied Sciences (Kathmandu, Nepal) developed a smartphone based microscopic assay method to screen (oo)cysts of Cryptosporidium and Giardia contamination of vegetable and water samples. The method consisting of a ball lens of 1 mm diameter, white LED as illumination source and Lugols's iodine staining provided magnification and contrast capable of distinguishing (oo)cysts of Cryptosporidium and Giardia. The analytical performance of the method was tested by spike recovery studies.
Ten microliters of concentrated sample were stained with 10 μL of diluted Lugol's iodine (1:2 in water) and subsequently loaded into hemocytometer. The sample was incubated for six minutes. The (oo)cysts were screened and enumerated in four quadrants of the hemocytometer under smartphone microscope. The cysts on the same hemocytometer were simultaneously counted by Trinocular brightfield microscope (Amscope, Irvine, CA, USA). Triplicate measurement was made for each concentrated suspension. The spiked samples were also examined with a fluorescent microscope (Labomed Inc, Los Angeles, CA, USA).
The team tested the smartphone microscope system for detecting (oo)cysts on seven types of vegetable (n = 196) and river water (n = 18) samples. They reported that 42% vegetable and 39% water samples were found to be contaminated with Cryptosporidium oocyst. Similarly, 31% vegetable and 33% water samples were contaminated with Giardia cyst. The recovery of Giardia ranged from 10.2 ± 4.0% in cabbage to 37.6 ± 2.4% in water and recovery of Cryptosporidium ranged from 26.8 ± 10.3% in cabbage to 49.2 ± 10.9% in tomato using smartphone microscope measurement.
The authors concluded that the smartphone based microscopic assay can be a low-cost alternative for screening of (oo)cyst of Cryptosporidium and Giardia in resource limited settings. The approximate cost of the microscope (excluding the cost of smartphone) is ~ USD 15. This method also has the potential to be used in clinical settings. The study was published on September 8, 2020 in the journal PLOS Neglected Tropical Diseases.
Related Links:
Kathmandu Institute of Applied Sciences
Amscope
Labomed Inc
Latest Technology News
- Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
- Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
- Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
- Smartphones Could Diagnose Diseases Using Infrared Scans
- Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
- 3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
- POC Paper-Based Sensor Platform to Transform Cardiac Diagnostics
- Study Explores Impact of POC Testing on Future of Diagnostics
- Low-Cost, Fast Response Sensor Enables Early and Accurate Detection of Lung Cancer
- Nanotechnology For Cervical Cancer Diagnosis Could Replace Invasive Pap Smears
- Lab-On-Chip Platform to Expedite Cancer Diagnoses
- Biosensing Platform Simultaneously Detects Vitamin C and SARS-CoV-2
- New Lens Method Analyzes Tears for Early Disease Detection
- FET-Based Sensors Pave Way for Portable Diagnostic Devices Capable of Detecting Multiple Diseases
- Paper-Based Biosensor System to Detect Glucose Using Sweat Could Revolutionize Diabetes Management
- First AI-Powered Blood Test Identifies Patients in Earliest Stage of Breast Cancer
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
New Genetic Tool Analyzes Umbilical Cord Blood to Predict Future Disease
Children are experiencing metabolic problems at increasingly younger ages, placing them at higher risk for serious health issues later in life. There is a growing need to identify this risk from birth... Read more
Spinal Fluid Biomarker for Parkinson’s Disease Offers Early and Accurate Diagnosis
Parkinson’s disease is a neurodegenerative condition typically diagnosed at an advanced stage based on clinical symptoms, primarily motor disorders. However, by this time, the brain has already undergone... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation
Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more
World’s First AI Model for Thyroid Cancer Diagnosis Achieves Over 90% Accuracy
Thyroid cancer is one of the most common cancers worldwide, and its precise management typically relies on two primary systems: (1) the 8th edition of the American Joint Committee on Cancer (AJCC) or ... Read more
Breakthrough Diagnostic Approach to Significantly Improve TB Detection
Tuberculosis (TB) remains the deadliest infectious disease globally, with 10.8 million new cases and 1.25 million deaths reported in 2023. Early detection through effective screening is crucial in identifying... Read more
Rapid, Ultra-Sensitive, PCR-Free Detection Method Makes Genetic Analysis More Accessible
Genetic testing has been an important method for detecting infectious diseases, diagnosing early-stage cancer, ensuring food safety, and analyzing environmental DNA. For a long time, polymerase chain reaction... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more