We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Novel Blood Test Predicts Psychotic Disorders Before They Emerge

By LabMedica International staff writers
Posted on 15 Sep 2020
Print article
Image: Q Exactive Hybrid Quadrupole-Orbitrap Mass Spectrometer (Photo courtesy of Thermo Fisher Scientific).
Image: Q Exactive Hybrid Quadrupole-Orbitrap Mass Spectrometer (Photo courtesy of Thermo Fisher Scientific).
Only around a quarter of young people who display mild, transitory psychotic symptoms at an early age ultimately go on to develop a serious psychotic disorder. Schizophrenia, for example, is generally not clinically diagnosed until a person reaches their twenties.

The condition is known to present a number of signs and symptoms than can precede the full-blown psychotic episodes often needed for clinical diagnosis. This early pre-clinical phase of a psychotic disorder is often referred to as the prodromal stage. In the case of schizophrenia, prodromal symptoms appear in nearly three quarters of patients up to five years before the first episode of psychosis occurs.

An international team of molecular psychiatrists led by the Royal College of Surgeons in Ireland (Dublin, Ireland) included in a study a prospective cohort of clinical high-risk (CHR) criteria enable identification of 344 participants recruited across 11 international sites. Protein depletion, digestion, and peptide purification were performed using baseline plasma samples. Prepared sample was injected on a Q Exactive Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo Fisher Scientific, Waltham MA, USA) operated in data-dependent acquisition mode for label-free liquid chromatography mass spectrometry. Nine proteins in plasma samples from the same participants were assessed using enzyme-linked immunosorbent assay (ELISA). A cohort of non-high risk individuals were included in the study.

The team used machine learning machine learning, and homed in on a unique pattern of proteins that distinguished those who ultimately went on to develop a psychotic disorder. Ten particular proteins were identified as most predictive, and the test was subsequently validated in a separate dataset. Using the most accurate protein pattern, they were able to correctly determine which high-risk subjects would go on to develop a psychotic disorder by the age of 18 with a 93% accuracy.

The test was less accurate in predicting those high-risk 12-year-olds that did not go on to develop a psychosis by the age of 18. However, considering only between 16% and 35% of young people considered at clinical high risk ultimately transition to a full psychotic disorder, even this low level of accuracy could be useful in stratifying those younger patients more likely to develop psychosis.

David R. Cotter, PhD, a molecular psychiatrist and a senior author of the study, said, “Our study has shown that, with help from machine learning, analysis of protein levels in blood samples can predict who is at truly at risk and could possibly benefit from preventive treatments. We now need to study these markers in other people at high risk of psychosis to confirm these findings.”

The authors concluded that they had developed models incorporating proteomic data predicting transition to psychotic disorder in the CHR state. In a general population sample, several of the same proteins contributed to prediction of psychotic experiences. The study was published on August 26, 2020 in the journal JAMA Psychiatry.


Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Respiratory QC Panel
Assayed Respiratory Control Panel
New
Vaginitis Test
Allplex Vaginitis Screening Assay

Print article

Channels

Molecular Diagnostics

view channel
Image: The study investigated D-dimer testing in patients who are at higher risk of pulmonary embolism (Photo courtesy of Adobe Stock)

D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism

Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Sekisui Diagnostics UK Ltd.