Nanoparticle System Captures Heart-Disease Biomarker From Blood
|
By LabMedica International staff writers Posted on 20 Aug 2020 |

The TriVersa NanoMate LESA uses chip-based electrospray ionization technology that combines the benefits of liquid chromatography, mass spectrometry, chip-based infusion, fraction collection, and direct surface analysis into one integrated ion source platform (Photo courtesy of Advion BioSciences).
Physicians currently use an antibody-based test called enzyme-linked immunosorbent assay (ELISA) to help diagnose heart attacks based on elevated levels of cardiac troponin I (cTnI) in the patient's blood sample. While the ELISA test is sensitive, patients can have high levels of cTnI in the blood without having heart disease, which can lead to expensive and unnecessary treatments for patients.
Measuring low-concentration proteins in the blood like cTnI is a classic needle-in-a-haystack problem. Rare, meaningful biomarkers of disease are completely overwhelmed by common and diagnostically impractical proteins in the blood. Current methods use antibodies to enrich and capture proteins in a complex sample to identify and quantify proteins. But antibodies are expensive, have batch-to-batch variations, and can generate inconsistent results.
Chemists at the University of Wisconsin-Madison (Madison, WI, USA) designed nanoparticles of magnetite, a magnetic form of iron oxide, and linked it to a peptide of 13 amino acids long designed to specifically bind to cTnI. The peptide latches onto cTnI in a blood sample, and the nanoparticles can be collected together using a magnet. Nanoparticles and peptides are easily made in the laboratory, making them cheap and consistent.
The team, by using the nanoparticles, was able to effectively enrich cTnI in samples of human heart tissue and blood. Then they used advanced mass spectrometry, which can distinguish different proteins by their mass, to not only get an accurate measurement of cTnI, but also to assess the various modified forms of the protein. Samples were analyzed by direct infusion using a TriVersa NanoMate system (Advion BioSciences, Ithaca, NY, USA) coupled to a solariX XR 12-Tesla Fourier Transform Ion Cyclotron Resonance mass spectrometer (FTICR-MS, Bruker Daltonics, Bremen, Germany).
Like many proteins, cTnI can be modified by the body depending on factors like an underlying disease or changes in the environment. In the case of cTnI, the body adds various numbers of phosphate groups, small molecular tags that might change the function of cTnI. These variations are subtle and hard to track.
Ying Ge, PhD, a Professor of Chemistry and senior author of the study, said, “So we want to use our nanoproteomics system to look into more details at various modified forms of this protein rather than just measuring its concentration. That will help reveal molecular fingerprints of cTnI from each patient for precision medicine. with high-resolution mass spectrometry, We can now 'see' these molecular details of proteins, like the hidden iceberg beneath the surface.” The study was published on August 6, 2020 in the journal Nature Communications.
Related Links:
University of Wisconsin-Madison
Advion BioSciences
Bruker Daltonics
Measuring low-concentration proteins in the blood like cTnI is a classic needle-in-a-haystack problem. Rare, meaningful biomarkers of disease are completely overwhelmed by common and diagnostically impractical proteins in the blood. Current methods use antibodies to enrich and capture proteins in a complex sample to identify and quantify proteins. But antibodies are expensive, have batch-to-batch variations, and can generate inconsistent results.
Chemists at the University of Wisconsin-Madison (Madison, WI, USA) designed nanoparticles of magnetite, a magnetic form of iron oxide, and linked it to a peptide of 13 amino acids long designed to specifically bind to cTnI. The peptide latches onto cTnI in a blood sample, and the nanoparticles can be collected together using a magnet. Nanoparticles and peptides are easily made in the laboratory, making them cheap and consistent.
The team, by using the nanoparticles, was able to effectively enrich cTnI in samples of human heart tissue and blood. Then they used advanced mass spectrometry, which can distinguish different proteins by their mass, to not only get an accurate measurement of cTnI, but also to assess the various modified forms of the protein. Samples were analyzed by direct infusion using a TriVersa NanoMate system (Advion BioSciences, Ithaca, NY, USA) coupled to a solariX XR 12-Tesla Fourier Transform Ion Cyclotron Resonance mass spectrometer (FTICR-MS, Bruker Daltonics, Bremen, Germany).
Like many proteins, cTnI can be modified by the body depending on factors like an underlying disease or changes in the environment. In the case of cTnI, the body adds various numbers of phosphate groups, small molecular tags that might change the function of cTnI. These variations are subtle and hard to track.
Ying Ge, PhD, a Professor of Chemistry and senior author of the study, said, “So we want to use our nanoproteomics system to look into more details at various modified forms of this protein rather than just measuring its concentration. That will help reveal molecular fingerprints of cTnI from each patient for precision medicine. with high-resolution mass spectrometry, We can now 'see' these molecular details of proteins, like the hidden iceberg beneath the surface.” The study was published on August 6, 2020 in the journal Nature Communications.
Related Links:
University of Wisconsin-Madison
Advion BioSciences
Bruker Daltonics
Latest Technology News
- Robotic Technology Unveiled for Automated Diagnostic Blood Draws
- ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
- Aptamer Biosensor Technology to Transform Virus Detection
- AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
- AI-Generated Sensors Open New Paths for Early Cancer Detection
- Pioneering Blood Test Detects Lung Cancer Using Infrared Imaging
- AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
- Diagnostic Chip Monitors Chemotherapy Effectiveness for Brain Cancer
- Machine Learning Models Diagnose ALS Earlier Through Blood Biomarkers
- Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







