LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Technology Discriminates Parkinson’s Disease from Multiple System Atrophy

By LabMedica International staff writers
Posted on 19 Feb 2020
Image: Immunohistochemistry for alpha-synuclein showing positive staining (brown) of an intraneural Lewy-body in the Substantia nigra in Parkinson`s disease (Photo courtesy of Marvin101).
Image: Immunohistochemistry for alpha-synuclein showing positive staining (brown) of an intraneural Lewy-body in the Substantia nigra in Parkinson`s disease (Photo courtesy of Marvin101).
It is challenging to distinguish between Parkinson’s Disease and Multiple System Atrophy (MSA) because the early signs are similar, disturbances in movement, tremors, uncontrollable movements during sleep, impaired speech, but the diseases progress differently and can require distinct treatment plans.

Parkinson’s Disease (PD) leads to shaking, stiffness, and difficulty with balance and movement as well as a host of nonmotor symptoms. MSA leads to similar motor impairment, and also earlier and more severe dysfunction of the autonomic nervous system, which controls involuntary actions such as blood pressure, digestion, and urination. MSA progresses quicker and is often mistaken for PD at first. Both diseases are characterized by deposits of a protein known as alpha-synuclein (aSyn) in the nervous system.

A team of scientists from different institutions and led by those at the University of Texas McGovern Medical School at Houston (Houston, TX, USA) used Protein Misfolding Cyclic Amplification (PMCA) technology that was shown in previous studies to detect misfolded proteins associated with diseases such as Creutzfeldt-Jakob and Alzheimer's disease. The investigators targeted misfolded aSyn aggregates as a way of developing a sensitive biochemical diagnosis for PD. The team put a small amount of the proteins in question from the patient's cerebrospinal fluid together with normal proteins and watched to see if and how they converted the normal proteins.

The scientists used a combination of biochemical, biophysical and biological methods to analyze the product of α-synuclein-PMCA, and found that the characteristics of the α-synuclein aggregates in the cerebrospinal fluid could be used to readily distinguish between Parkinson’s disease and multiple system atrophy. They also found that the properties of aggregates that were amplified from the cerebrospinal fluid were similar to those of aggregates that were amplified from the brain.

These findings suggest that α-synuclein aggregates that are associated with Parkinson’s disease and multiple system atrophy correspond to different conformational strains of α-synuclein, which can be amplified and detected by α-synuclein-PMCA. The aSyn-PMCA can successfully discriminate between PD and MSA with an overall sensitivity of 95.4%, which could allow doctors a look into the future to see which disease they need to address. The study also helps to understand the basis of these diseases at the molecular basis.

Claudio Soto, PhD, a Professor of Neurology and senior author of the study, said “Our latest study shows that the aSyn aggregates of PD and MSA have different properties, so by amplifying the abnormal aggregates we can detect with high efficiency which disease the patient has. This has huge implications both for accurate diagnosis and clinical care of the patient, and the development of new specific treatments for both diseases.” The study was published on February 5, 2020 in the journal Nature.

Related Links:
University of Texas McGovern Medical School at Houston

Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
Alcohol Testing Device
Dräger Alcotest 7000

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more