Next Generation Glycated Hemoglobin Assay Evaluated
By LabMedica International staff writers Posted on 26 Nov 2019 |

Image: The cobas c 513 analyzer is a dedicated high throughput HbA1c analyzer designed to meet efficiency, throughput and accuracy needs for HbA1c laboratory testing (Photo courtesy of Roche Diagnostics)
Diabetes mellitus is a pathological condition that affects all age groups worldwide. The percentage of glycated hemoglobin A1C (HbA1C) reflects the mean plasma glucose level over the previous 3 to 4 months for most individuals and can be used to diagnose type 2 diabetes.
Immunoassay has become an accepted approach for the measurement of HbA1C. Following the on-board detergent-induced lysis of whole blood samples, the amount of HbA1C is quantified by the binding of an antibody to HbA molecules that are glycated at the N-terminus of their β-chain. This amount is compared to the total concentration of Hb in the sample determined by absorbance values and a percent HbA1C is calculated.
Medical Laboratorians at the University of Calgary (Calgary, AB, Canada) and their associates evaluated the performance characteristics of the Roche Cobas c 513 (Roche Diagnostics, Basel, Switzerland), a stand-alone next generation immunoassay analyzer for HbA1C. They assessed the imprecision, accuracy, analytical measuring range, and throughput of this instrument. Method comparisons studies were performed against a previous generation immunoassay analyzer (Roche Integra 800 CTS). They also studied the effects of erythrocyte sedimentation and potential interference from hemoglobin variants.
The method comparison of the c 513 whole blood or hemolysate application to the Integra 800 CTS assay was performed using 40 fresh EDTA whole blood samples distributed across the reportable range of the HbA1c assay retrieved after routine measurement. The effect of sedimentation of whole blood samples on the measurement of %HbA1C was investigated by re-assaying 30 unmixed samples 24 hours after the initial mixing. These samples ranged from 4.5-15.5 %HbA1C (median value, 11.9 %HbA1C). The effect of potentially interfering hemoglobin variants on the HbA1C measurement was investigated by assaying patient samples (N = 6–36) containing heterozygous HbS, HbC, HbE, HbD, or HbJ or elevated levels of HbF (6.8–29.9%) on the c 513, Integra 800 CTS, and Variant II Turbo 2.0 (Bio-Rad, Hercules, CA, USA).
The scientists reported that the within-run and between-run precisions were 0.5–0.7 and 0.8–1.3%CV, respectively. An average bias of -1.6% to proficiency survey samples was observed. The c 513 correlated well with the Integra (slope = 0.94, y-intercept = 0.50, and correlation coefficient = 0.998). The effect of hemoglobin variants on this assay was negligible while specimens containing ≥10% HbF demonstrated a negative bias. The c 513 instrument can process up to 340 samples per hour.
The authors concluded that their data supports the routine use of the c 513 for %HbA1C quantification by the clinical laboratory. The assay is precise and accurate and the instrument is capable of testing of more than 7,500 specimens in 24 hours. While care must be taken to ensure correct sample processing is followed, this instrument is a good solution for large references laboratories with HbA1C volumes of 1,500 per day or higher. The c 513 is a precise, accurate, automated high throughput analyzer for measuring HbA1C in large laboratories. The study was published on November 9, 2019 in the journal Practical Laboratory Medicine.
Related Links:
University of Calgary
Roche Diagnostics
Bio-Rad
Immunoassay has become an accepted approach for the measurement of HbA1C. Following the on-board detergent-induced lysis of whole blood samples, the amount of HbA1C is quantified by the binding of an antibody to HbA molecules that are glycated at the N-terminus of their β-chain. This amount is compared to the total concentration of Hb in the sample determined by absorbance values and a percent HbA1C is calculated.
Medical Laboratorians at the University of Calgary (Calgary, AB, Canada) and their associates evaluated the performance characteristics of the Roche Cobas c 513 (Roche Diagnostics, Basel, Switzerland), a stand-alone next generation immunoassay analyzer for HbA1C. They assessed the imprecision, accuracy, analytical measuring range, and throughput of this instrument. Method comparisons studies were performed against a previous generation immunoassay analyzer (Roche Integra 800 CTS). They also studied the effects of erythrocyte sedimentation and potential interference from hemoglobin variants.
The method comparison of the c 513 whole blood or hemolysate application to the Integra 800 CTS assay was performed using 40 fresh EDTA whole blood samples distributed across the reportable range of the HbA1c assay retrieved after routine measurement. The effect of sedimentation of whole blood samples on the measurement of %HbA1C was investigated by re-assaying 30 unmixed samples 24 hours after the initial mixing. These samples ranged from 4.5-15.5 %HbA1C (median value, 11.9 %HbA1C). The effect of potentially interfering hemoglobin variants on the HbA1C measurement was investigated by assaying patient samples (N = 6–36) containing heterozygous HbS, HbC, HbE, HbD, or HbJ or elevated levels of HbF (6.8–29.9%) on the c 513, Integra 800 CTS, and Variant II Turbo 2.0 (Bio-Rad, Hercules, CA, USA).
The scientists reported that the within-run and between-run precisions were 0.5–0.7 and 0.8–1.3%CV, respectively. An average bias of -1.6% to proficiency survey samples was observed. The c 513 correlated well with the Integra (slope = 0.94, y-intercept = 0.50, and correlation coefficient = 0.998). The effect of hemoglobin variants on this assay was negligible while specimens containing ≥10% HbF demonstrated a negative bias. The c 513 instrument can process up to 340 samples per hour.
The authors concluded that their data supports the routine use of the c 513 for %HbA1C quantification by the clinical laboratory. The assay is precise and accurate and the instrument is capable of testing of more than 7,500 specimens in 24 hours. While care must be taken to ensure correct sample processing is followed, this instrument is a good solution for large references laboratories with HbA1C volumes of 1,500 per day or higher. The c 513 is a precise, accurate, automated high throughput analyzer for measuring HbA1C in large laboratories. The study was published on November 9, 2019 in the journal Practical Laboratory Medicine.
Related Links:
University of Calgary
Roche Diagnostics
Bio-Rad
Latest Clinical Chem. News
- Low-Cost Portable Screening Test to Transform Kidney Disease Detection
- New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
- Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
- Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
- AI-Powered Raman Spectroscopy Method Enables Rapid Drug Detection in Blood
- Novel LC-MS/MS Assay Detects Low Creatinine in Sweat and Saliva
- Biosensing Technology Breakthrough Paves Way for New Methods of Early Disease Detection
- New Saliva Test Rapidly Identifies Paracetamol Overdose
- POC Saliva Testing Device Predicts Heart Failure in 15 Minutes
- Screening Tool Detects Multiple Health Conditions from Single Blood Drop
- Integrated Chemistry and Immunoassay Analyzer with Extensive Assay Menu Offers Flexibility, Scalability and Data Commutability
- Rapid Drug Test to Improve Treatment for Patients Presenting to Hospital
- AI Model Detects Cancer at Lightning Speed through Sugar Analyses
- First-Ever Blood-Powered Chip Offers Real-Time Health Monitoring
- New ADLM Guidance Provides Expert Recommendations on Clinical Testing For Respiratory Viral Infections
- 3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models
Channels
Molecular Diagnostics
view channel
Novel Autoantibody Against DAGLA Discovered in Cerebellitis
Autoimmune cerebellar ataxias are strongly disabling disorders characterized by an impaired ability to coordinate muscle movement. Cerebellar autoantibodies serve as useful biomarkers to support rapid... Read more
Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more
New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
"Liquid biopsy" technology, which relies on blood tests for early cancer detection and monitoring cancer burden in patients, has the potential to transform cancer care. However, detecting the mutational... Read more
"Metal Detector" Algorithm Hunts Down Vulnerable Tumors
Scientists have developed an algorithm capable of functioning as a "metal detector" to identify vulnerable tumors, marking a significant advancement in personalized cancer treatment. This breakthrough... Read more
Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
Pancreatic cancer is often asymptomatic in its early stages, making it difficult to detect until it has progressed. Consequently, only 15% of pancreatic cancers are diagnosed early enough to allow for... Read moreTechnology
view channel
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more