New Blood Test Helps Detect Brain Injury in Minutes
By LabMedica International staff writers Posted on 11 Sep 2019 |

Image: The i-STAT Alinity system integrates with-patient testing directly into the patient-care pathway, accelerating time to treatment, improving quality and increasing access to care (Photo courtesy of Abbott).
After traumatic brain injury (TBI), plasma concentration of glial fibrillary acidic protein (GFAP) correlates with intracranial injury visible on computerized axial tomography (CT) scan. Some patients with suspected TBI with normal CT findings show pathology on magnetic resonance imaging (MRI).
Recently scientists have found that a handheld blood analyzer could help detect brain injury within 15 minutes using a commercial system that measures GFAP and ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) proteins from the brain that are released into the blood after a brain injury, They assessed the discriminative ability of GFAP to identify MRI abnormalities in patients with normal CT findings.
Neurologists at the University of California at San Francisco (San Francisco, CA, USA) and their associates enrolled patients with TBI who had a clinically indicated head CT scan within 24 hours of injury at 18 level 1 trauma centers in the USA. For this analysis, they included patients with normal CT findings (Glasgow Coma Scale score 13–15) who consented to venipuncture within 24 hours post injury and who had a MRI scan 7–18 days post injury. They compared MRI findings in these patients with those of orthopedic trauma controls and healthy controls recruited from the study sites.
Plasma GFAP concentrations (pg/mL) were measured using a prototype assay on a point-of-care platform, the hand-held blood analyzer, the i-STAT Alinity system. The scientists used receiver operating characteristic (ROC) analysis to evaluate the discriminative ability of GFAP for positive MRI scans in patients with negative CT scans over 24 hours (time between injury and venipuncture). The primary outcome was the area under the ROC curve (AUC) for GFAP in patients with CT-negative and MRI-positive findings versus patients with CT-negative and MRI-negative findings within 24 hours of injury.
The team recruited between February 26, 2014, and June 15, 2018, 450 patients with normal head CT scans (of whom 330 had negative MRI scans and 120 had positive MRI scans), 122 orthopedic trauma controls, and 209 healthy controls. AUC for GFAP in patients with CT-negative and MRI-positive findings versus patients with CT-negative and MRI-negative findings was 0·777 over 24 hours. Median plasma GFAP concentration was highest in patients with CT-negative and MRI-positive findings (414.4 pg/mL), followed by patients with CT-negative and MRI-negative findings (74.0 pg/mL), orthopedic trauma controls (13.1 pg/mL), and healthy controls (8.0 pg/mL, all comparisons between patients with CT-negative MRI-positive findings and other groups.
The authors concluded that analysis of blood GFAP concentrations using prototype assays on a point-of-care platform within 24 hours of injury might improve detection of TBI and identify patients who might need subsequent MRI and follow-up. The study was published on August 23, 2019, in the journal The Lancet Neurology.
Related Links:
University of California at San Francisco
Recently scientists have found that a handheld blood analyzer could help detect brain injury within 15 minutes using a commercial system that measures GFAP and ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) proteins from the brain that are released into the blood after a brain injury, They assessed the discriminative ability of GFAP to identify MRI abnormalities in patients with normal CT findings.
Neurologists at the University of California at San Francisco (San Francisco, CA, USA) and their associates enrolled patients with TBI who had a clinically indicated head CT scan within 24 hours of injury at 18 level 1 trauma centers in the USA. For this analysis, they included patients with normal CT findings (Glasgow Coma Scale score 13–15) who consented to venipuncture within 24 hours post injury and who had a MRI scan 7–18 days post injury. They compared MRI findings in these patients with those of orthopedic trauma controls and healthy controls recruited from the study sites.
Plasma GFAP concentrations (pg/mL) were measured using a prototype assay on a point-of-care platform, the hand-held blood analyzer, the i-STAT Alinity system. The scientists used receiver operating characteristic (ROC) analysis to evaluate the discriminative ability of GFAP for positive MRI scans in patients with negative CT scans over 24 hours (time between injury and venipuncture). The primary outcome was the area under the ROC curve (AUC) for GFAP in patients with CT-negative and MRI-positive findings versus patients with CT-negative and MRI-negative findings within 24 hours of injury.
The team recruited between February 26, 2014, and June 15, 2018, 450 patients with normal head CT scans (of whom 330 had negative MRI scans and 120 had positive MRI scans), 122 orthopedic trauma controls, and 209 healthy controls. AUC for GFAP in patients with CT-negative and MRI-positive findings versus patients with CT-negative and MRI-negative findings was 0·777 over 24 hours. Median plasma GFAP concentration was highest in patients with CT-negative and MRI-positive findings (414.4 pg/mL), followed by patients with CT-negative and MRI-negative findings (74.0 pg/mL), orthopedic trauma controls (13.1 pg/mL), and healthy controls (8.0 pg/mL, all comparisons between patients with CT-negative MRI-positive findings and other groups.
The authors concluded that analysis of blood GFAP concentrations using prototype assays on a point-of-care platform within 24 hours of injury might improve detection of TBI and identify patients who might need subsequent MRI and follow-up. The study was published on August 23, 2019, in the journal The Lancet Neurology.
Related Links:
University of California at San Francisco
Latest Clinical Chem. News
- First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
- Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse
- ‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
- Low-Cost Portable Screening Test to Transform Kidney Disease Detection
- New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
- Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
- Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
- AI-Powered Raman Spectroscopy Method Enables Rapid Drug Detection in Blood
- Novel LC-MS/MS Assay Detects Low Creatinine in Sweat and Saliva
- Biosensing Technology Breakthrough Paves Way for New Methods of Early Disease Detection
- New Saliva Test Rapidly Identifies Paracetamol Overdose
- POC Saliva Testing Device Predicts Heart Failure in 15 Minutes
- Screening Tool Detects Multiple Health Conditions from Single Blood Drop
- Integrated Chemistry and Immunoassay Analyzer with Extensive Assay Menu Offers Flexibility, Scalability and Data Commutability
- Rapid Drug Test to Improve Treatment for Patients Presenting to Hospital
- AI Model Detects Cancer at Lightning Speed through Sugar Analyses
Channels
Molecular Diagnostics
view channel
Liquid Biopsy Assay Detects Recurrence in CRC Patients Prior to Imaging
The detection of circulating tumor DNA (ctDNA) after treatment is a strong indicator of recurrence in colorectal cancer (CRC), but it often goes undetected due to the low traces of ctDNA present in the blood.... Read more
Ultra Fast Synovial Fluid Test Diagnoses Osteoarthritis and Rheumatoid Arthritis In 10 Minutes
Studies indicate that more than 50% of individuals aged 65 and older experience symptoms of osteoarthritis, while rheumatoid arthritis is a serious chronic condition affecting approximately 1 in 100 people... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
New Test Diagnoses Bacterial Meningitis Quickly and Accurately
Bacterial meningitis is a potentially fatal condition, with one in six patients dying and half of the survivors experiencing lasting symptoms. Therefore, rapid diagnosis and treatment are critical.... Read more
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
AI-Based Liquid Biopsy Approach to Revolutionize Brain Cancer Detection
Detecting brain cancers remains extremely challenging, with many patients only receiving a diagnosis at later stages after symptoms like headaches, seizures, or cognitive issues appear. Late-stage diagnoses... Read more
AI-Driven Analysis of Digital Pathology Images to Improve Pediatric Sarcoma Subtyping
Pediatric sarcomas are rare and diverse tumors that can develop in various types of soft tissue, such as muscle, tendons, fat, blood or lymphatic vessels, nerves, or the tissue surrounding joints.... Read more
AI-Based Model Predicts Kidney Cancer Therapy Response
Each year, nearly 435,000 individuals are diagnosed with clear cell renal cell carcinoma (ccRCC), making it the most prevalent subtype of kidney cancer. When the disease spreads, anti-angiogenic therapies... Read more
Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation
Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read moreTechnology
view channel
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more