CTC Purification Enables Identification of Cancer-Linked Genetic Arrangements
By LabMedica International staff writers Posted on 29 Aug 2019 |

Image: A diagram illustrating the combined use of bioorthogonal ligation (i.e., the reaction between Tz and TCO) and disulfide cleavage–driven by DTT to enable capture and release of CTCs using Click Chips (Photo courtesy of University of California, Los Angeles).
The use of circulating tumor cells (CTCs) as a surrogate tumor source for molecular profiling of disease offers a potential noninvasive diagnostic solution for understanding underlying tumor biology, guiding treatment interventions, and monitoring disease progression.
CTCs are cells that have shed into the vasculature or lymphatics from a primary tumor and are carried around the body in the blood circulation. Unlike circulating tumor DNA or RNA, which are highly fragmented and compounded by substantial background, CTCs house intact genomic DNA and RNA, providing more genetic information about the tumors from which they originate.
An international team of scientists collaborating with the University of California, Los Angeles (Los Angeles, CA, USA) developed a method combining antibody-based circulating tumor cell (CTC) capture and disulfide cleavage-driven CTC release to efficiently and rapidly purify the cells for downstream molecular analysis. The team demonstrated a covalent chemistry–based nanostructured silicon substrate (“Click Chip”) for CTC purification that leverages bioorthogonal ligation–mediated CTC capture and disulfide cleavage–driven CTC release.
The team designed the custom microfluidic chip that integrates tetrazine antibody (Tz)-grafted silicon nanowire substrates with a network of microchannels modified to induce chaotic mixing. In order to perform biorthogonal ligation-mediated CTC capture, they grafted trans-cyclooctene (TCO) modified capture antibodies to the CTCs in a blood sample. When a blood sample runs through the chip, the Tz and TCO react and instantly snag the CTCs. This they likened TCO and Tz to the male and female parts of a seatbelt, respectively, that "click" together.
The group then tested the ability to detect and quantify ALK and ROS1 oncogenic gene rearrangements in CTCs isolated from patients with non-small-cell lung carcinoma (NSCLC) using Click Chip. They collected blood samples from 12 NSCLC patients before and after crizotinib cancer drug therapy, as well as samples from six healthy controls. Seven of the NSCLC patients had ALK rearrangements and five had ROS1 rearrangements.
The team used two tubes of 2-ml blood samples from each patient to perform CTC capture, immunostaining, CTC enumeration, and CTC purification in the Click Chip, followed by reverse transcriptase (RT) Droplet Digital PCR analysis to detect and quantify the copy number of rearranged ALK or ROS1 transcripts. They found that each NSCLC patient had anywhere from 0 to 36 CTCs in their blood samples. They also detected positive ALK or ROS1 rearrangements in all 12 patients, which was consistent with tissue biopsies collected at initial diagnosis.
Hsian-Rong Tseng, PhD, a professor and co-author of the study, said, “With the improved rare-cell purification performance observed for Click Chips, it is conceivable that the devices can be adopted for purification of rare circulating fetal nucleated cells, such as circulating trophoblasts for downstream single-cell whole genome profiling, paving the way for implementation of Non-Invasive Prenatal Testing.” The study was published on July 31, 2019, in the journal Science Advances.
Related Links:
University of California, Los Angeles
CTCs are cells that have shed into the vasculature or lymphatics from a primary tumor and are carried around the body in the blood circulation. Unlike circulating tumor DNA or RNA, which are highly fragmented and compounded by substantial background, CTCs house intact genomic DNA and RNA, providing more genetic information about the tumors from which they originate.
An international team of scientists collaborating with the University of California, Los Angeles (Los Angeles, CA, USA) developed a method combining antibody-based circulating tumor cell (CTC) capture and disulfide cleavage-driven CTC release to efficiently and rapidly purify the cells for downstream molecular analysis. The team demonstrated a covalent chemistry–based nanostructured silicon substrate (“Click Chip”) for CTC purification that leverages bioorthogonal ligation–mediated CTC capture and disulfide cleavage–driven CTC release.
The team designed the custom microfluidic chip that integrates tetrazine antibody (Tz)-grafted silicon nanowire substrates with a network of microchannels modified to induce chaotic mixing. In order to perform biorthogonal ligation-mediated CTC capture, they grafted trans-cyclooctene (TCO) modified capture antibodies to the CTCs in a blood sample. When a blood sample runs through the chip, the Tz and TCO react and instantly snag the CTCs. This they likened TCO and Tz to the male and female parts of a seatbelt, respectively, that "click" together.
The group then tested the ability to detect and quantify ALK and ROS1 oncogenic gene rearrangements in CTCs isolated from patients with non-small-cell lung carcinoma (NSCLC) using Click Chip. They collected blood samples from 12 NSCLC patients before and after crizotinib cancer drug therapy, as well as samples from six healthy controls. Seven of the NSCLC patients had ALK rearrangements and five had ROS1 rearrangements.
The team used two tubes of 2-ml blood samples from each patient to perform CTC capture, immunostaining, CTC enumeration, and CTC purification in the Click Chip, followed by reverse transcriptase (RT) Droplet Digital PCR analysis to detect and quantify the copy number of rearranged ALK or ROS1 transcripts. They found that each NSCLC patient had anywhere from 0 to 36 CTCs in their blood samples. They also detected positive ALK or ROS1 rearrangements in all 12 patients, which was consistent with tissue biopsies collected at initial diagnosis.
Hsian-Rong Tseng, PhD, a professor and co-author of the study, said, “With the improved rare-cell purification performance observed for Click Chips, it is conceivable that the devices can be adopted for purification of rare circulating fetal nucleated cells, such as circulating trophoblasts for downstream single-cell whole genome profiling, paving the way for implementation of Non-Invasive Prenatal Testing.” The study was published on July 31, 2019, in the journal Science Advances.
Related Links:
University of California, Los Angeles
Latest Technology News
- Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
- Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
- Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
- Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
- Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
- Smartphones Could Diagnose Diseases Using Infrared Scans
- Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
- 3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
- POC Paper-Based Sensor Platform to Transform Cardiac Diagnostics
- Study Explores Impact of POC Testing on Future of Diagnostics
- Low-Cost, Fast Response Sensor Enables Early and Accurate Detection of Lung Cancer
- Nanotechnology For Cervical Cancer Diagnosis Could Replace Invasive Pap Smears
- Lab-On-Chip Platform to Expedite Cancer Diagnoses
- Biosensing Platform Simultaneously Detects Vitamin C and SARS-CoV-2
- New Lens Method Analyzes Tears for Early Disease Detection
- FET-Based Sensors Pave Way for Portable Diagnostic Devices Capable of Detecting Multiple Diseases
Channels
Clinical Chemistry
view channel
AI-Powered Blood Test Accurately Detects Ovarian Cancer
Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more
Automated Decentralized cfDNA NGS Assay Identifies Alterations in Advanced Solid Tumors
Current circulating cell-free DNA (cfDNA) assays are typically centralized, requiring specialized handling and transportation of samples. Introducing a flexible, decentralized sequencing system at the... Read moreMass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more
First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read moreMolecular Diagnostics
view channel
Microbial Cell-Free DNA Test Accurately Identifies Pathogens Causing Pneumonia and Other Lung Infections
Bronchoalveolar lavage (BAL) is a commonly used procedure for diagnosing lung infections, especially in immunocompromised patients. However, standard tests often fail to pinpoint the exact pathogen, leading... Read more
Non-Biopsy Approach to Transform Adult Celiac Disease Diagnoses
In the United States, the diagnosis of celiac disease in adults typically relies on a combination of serologic testing and a confirmatory small bowel biopsy during upper endoscopy. In contrast, European... Read moreHematology
view channel
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read more
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
New Blood Test Detects Up to Five Infectious Diseases at POC
Researchers have developed a prototype flow-through assay capable of detecting up to five different infections, with results that can be quickly analyzed and transmitted via a specialized smartphone app.... Read more
Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, led to 1.25 million deaths in 2023, with 13% of those occurring in people living with HIV. The current primary diagnostic method for... Read moreTechnology
view channel
Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more