Bacteriophage-Based Blood Test Rapidly Detects TB Bacteria
|
By LabMedica International staff writers Posted on 15 Jul 2019 |

Image: A researcher preparing blood samples for Actiphage testing (Photo courtesy of the University of Nottingham, School of Bioscience).
A blood test based on bacteriophage that infect living Mycobacterium tuberculosis (Mtb) bacteria has been shown to diagnose human tuberculosis (TB) and may be able to predict which patients with latent tuberculosis will progress to the active form of the disease.
It is difficult to diagnosis tuberculosis through traditional culture of the slow growing Mtb. Molecular tests to detect Mtb DNA are of limited value due to the organisms’ cell wall, which complicates DNA extraction. The new PBD Biotech (Suffolk, United Kingdom) Actiphage test uses a specific bacteriophage that infects live Mtb and ruptures the cells to release DNA. The DNA is then analyzed by PCR. The whole testing process can be completed in as little six hours.
Investigators at Leicester Biomedical Research Centre (United Kingdom) and the University of Nottingham (United Kingdom) used the Actiphage test to study 66 subjects who were separated into four groups: those with active pulmonary TB, those with latent TB, a control group of patients referred for suspected TB but found not to have the disease, and a control group of healthy individuals. The subjects were tested for Mtb twice, 12 months apart.
Results of Actiphage testing revealed positive findings for 73% of subjects who were subsequently diagnosed with TB. None of the participants in the control groups tested positive with Actiphage, and none of the patients with latent TB who tested negative with Actiphage went on to develop active TB.
The finding that two of the three subjects with latent TB infection who tested positive with Actiphage went on to develop the active form of the disease more than six months later, suggested that the test may have a predictive role in identifying people with the infection at risk of developing the disease.
“TB is the leading cause of death from an infectious disease. It most commonly affects the lungs and from this site is transmitted to others by coughing and sneezing. As there is a lack of diagnostic tools for people unable to bring up sputum, diagnosis is delayed, increasing the likelihood that the disease is spread,” said senior author Dr. Pranabashis Haldar, clinical senior lecturer at the University of Leicester. “Our observations provide new insights into how human TB develops and support recent evidence of the existence of a transitional state of TB infection called incipient TB that does not produce symptoms but carries a high risk of progressing to active TB. There is potential for Actiphage to be developed, both as a mainstream blood test to diagnose TB and as a test used in screening programs to help us identify and treat people with latent infection.”
The study was published in the June 22, 2019, online edition of the journal Clinical Infectious Diseases.
Related Links:
PBD Biotech
Leicester Biomedical Research Centre
University of Nottingham
It is difficult to diagnosis tuberculosis through traditional culture of the slow growing Mtb. Molecular tests to detect Mtb DNA are of limited value due to the organisms’ cell wall, which complicates DNA extraction. The new PBD Biotech (Suffolk, United Kingdom) Actiphage test uses a specific bacteriophage that infects live Mtb and ruptures the cells to release DNA. The DNA is then analyzed by PCR. The whole testing process can be completed in as little six hours.
Investigators at Leicester Biomedical Research Centre (United Kingdom) and the University of Nottingham (United Kingdom) used the Actiphage test to study 66 subjects who were separated into four groups: those with active pulmonary TB, those with latent TB, a control group of patients referred for suspected TB but found not to have the disease, and a control group of healthy individuals. The subjects were tested for Mtb twice, 12 months apart.
Results of Actiphage testing revealed positive findings for 73% of subjects who were subsequently diagnosed with TB. None of the participants in the control groups tested positive with Actiphage, and none of the patients with latent TB who tested negative with Actiphage went on to develop active TB.
The finding that two of the three subjects with latent TB infection who tested positive with Actiphage went on to develop the active form of the disease more than six months later, suggested that the test may have a predictive role in identifying people with the infection at risk of developing the disease.
“TB is the leading cause of death from an infectious disease. It most commonly affects the lungs and from this site is transmitted to others by coughing and sneezing. As there is a lack of diagnostic tools for people unable to bring up sputum, diagnosis is delayed, increasing the likelihood that the disease is spread,” said senior author Dr. Pranabashis Haldar, clinical senior lecturer at the University of Leicester. “Our observations provide new insights into how human TB develops and support recent evidence of the existence of a transitional state of TB infection called incipient TB that does not produce symptoms but carries a high risk of progressing to active TB. There is potential for Actiphage to be developed, both as a mainstream blood test to diagnose TB and as a test used in screening programs to help us identify and treat people with latent infection.”
The study was published in the June 22, 2019, online edition of the journal Clinical Infectious Diseases.
Related Links:
PBD Biotech
Leicester Biomedical Research Centre
University of Nottingham
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreMolecular Diagnostics
view channel
Benchtop Analyzer Runs Chemistries, Immunoassays and Hematology in Single Device
Routine blood tests remain dependent on off-site laboratories, resulting in delays, higher costs, and logistical barriers in decentralized care settings. Now, a new multimodal diagnostic solution delivers... Read more
POC Bordetella Test Delivers PCR-Accurate Results in 15 Minutes
Whooping cough remains difficult to diagnose early because its first symptoms resemble other respiratory infections, leading clinicians to treat empirically and often too late. With whooping cough cases... Read more
Pinprick Blood Test Could Detect Disease 10 Years Before Symptoms Appear
Many serious conditions begin silently years before symptoms appear, yet routine screening rarely detects these early physiological shifts. A powerful new solution is emerging: pinprick blood tests driven... Read more
Refined C-Reactive Protein Cutoffs Help Assess Sepsis Risk in Preterm Babies
Early-onset sepsis (EOS) is a dangerous bloodstream infection that appears in the first three days of life, yet its early symptoms resemble many benign newborn conditions. To support urgent treatment decisions,... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Gene Signature Test Predicts Response to Key Breast Cancer Treatment
DK4/6 inhibitors paired with hormone therapy have become a cornerstone treatment for advanced HR+/HER2– breast cancer, slowing tumor growth by blocking key proteins that drive cell division.... Read more
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read morePathology
view channel
AI Tool Improves Breast Cancer Detection
Breast cancer diagnosis relies on examining microscopic tissue samples, a time-intensive process made more challenging by global shortages of trained pathologists. Delays in diagnosis can lead to missed... Read more
AI Tool Predicts Treatment Success in Rectal Cancer Patients
Artificial intelligence (AI) may soon help clinicians identify which rectal cancer patients are likely to respond well to treatment, using only the routine biopsy slides already obtained at diagnosis.... Read moreTechnology
view channel
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read more
AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
Detecting lung cancer early remains one of the biggest challenges in oncology, largely because current tools are invasive, expensive, or unable to identify the disease in its earliest phases.... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more







 Analyzer.jpg)
