We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Parallel Assays Developed for CSF Alzheimer's Disease Proteins

By LabMedica International staff writers
Posted on 29 Apr 2019
Image: Q-Exactive HF Hybrid Quadrupole-Orbitrap mass spectrometer coupled to a Dionex Ultimate 3000 RSLC Nano system (Photo courtesy of Thermo Fisher Scientific).
Image: Q-Exactive HF Hybrid Quadrupole-Orbitrap mass spectrometer coupled to a Dionex Ultimate 3000 RSLC Nano system (Photo courtesy of Thermo Fisher Scientific).
Detailed knowledge of protein changes in cerebrospinal fluid (CSF) across healthy and diseased individuals would provide a better understanding of the onset and progression of neurodegenerative disorders.

The protein concentration in CSF may change as a result of neuronal damage, altered neuronal functions or CSF flow rate. It therefore represents an exquisite source of information about the status of the central nervous system in physiological and pathological conditions.

Scientists from the KTH Royal Institute of Technology (Stockholm, Sweden) selected 20 brain-enriched proteins previously identified in CSF by antibody suspension bead arrays (SBA) to be potentially biomarkers for Alzheimer's disease (AD) and verified these using an orthogonal approach. They examined the same set of 94 CSF samples from patients affected by AD (including preclinical and prodromal), mild cognitive impairment (MCI), non-AD dementia and healthy individuals, which had previously been analyzed by SBA.

Twenty-eight parallel reaction monitoring (PRM) assays were developed and 13 of them could be validated for protein quantification. Mass spectrometry analysis was performed on a Q-Exactive HF Hybrid Quadrupole-Orbitrap mass spectrometer coupled to a Dionex Ultimate 3000 RSLC Nano system for reversed phase chromatography. Samples were automatically injected onto a C18 trap column followed by a C18 EASY-Spray analytical column.

Antibody profiles were verified by PRM. For seven proteins, the antibody profiles were highly correlated with the PRM results and GAP43, VCAM1 and PSAP were identified as potential markers of preclinical AD. In conclusion, the team demonstrated the usefulness of targeted mass spectrometry as a tool for the orthogonal verification of antibody profiling data, suggesting that these complementary methods can be successfully applied for comprehensive exploration of CSF protein levels in neurodegenerative disorders.

The authors concluded that their study demonstrated that the application of an orthogonal method such as PRM for the verification of antibody-based experiments is a convenient approach to confirm the most robust protein profiles discovered. The comparison of data obtained by two different platforms is a very powerful approach, but the information gained should be interpreted in the light of the fact that the two methods, based on different analytical principles, present peculiar limits in protein detection and should be regarded as complementary. The study was published online on March 9, 2019, in the journal Clinica Chimica Acta.

Related Links:
KTH Royal Institute of Technology

Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sample Transportation System
Tempus1800 Necto
Gold Member
Hematology Analyzer
Medonic M32B

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more