LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Version of CRISPR/Cas3 More Impactful Gene-Editing Tool

By LabMedica International staff writers
Posted on 23 Apr 2019
Print article
Image: T. fusca, a source of Cas3 nuclease (Photo courtesy of Microbe Wiki).
Image: T. fusca, a source of Cas3 nuclease (Photo courtesy of Microbe Wiki).
A less precise but more impactful version of the CRISPR/Cas9 gene-editing tool was described in a recent paper.

CRISPR/Cas9 is regarded as the cutting edge of molecular biology technology. CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. Since 2013, the CRISPR/Cas9 system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 enzyme and appropriate guide RNAs (sgRNAs) into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR/Cas9 system from Streptococcus pyogenes is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides that shepherd the Cas9 protein to the target gene on a DNA strand.

Investigators at Cornell University (Ithaca, NY, USA) reported in the April 8, 2019, online edition of the journal Molecular Cell that they had worked with a somewhat different version of the CRISPR tool, CRISPR/Cas3. Cas3 from Thermobifida fusca was found to be guided specifically towards Cascade-bound target DNA in the presence of an optimal Protospacer Adjacent Motif (PAM) sequence, and through physical interactions with the CasA component of the Cascade and the non-complementary strand of the ds-DNA substrate. This means that after using the CRISPR mechanism to identify the target DNA, the Cas 3 nuclease erased DNA continuously, for up to 100 kilobases with 13%–60% editing efficiency.

For research purposes, CRISPR/Cas3 could be used to screen for non-coding genetic elements and erase long sequences of DNA. Once erased, it would be possible to determine what functions were missing in an organism, and identify the role of that genetic element. A clinical use could be to identify and delete the entire genome of pathogenic viruses.

“My lab spent the past ten years figuring out how CRISPR/Cas3 works. I am thrilled that my colleagues and I finally demonstrated its genome-editing activity in human cells,” said contributing author Dr. Ailong Ke, professor of molecular biology and genetics at Cornell University. “Our tools can be made to target these viruses very specifically and then erase them very efficiently. In theory, it could provide a cure for these viral diseases.”

Related Links:
Cornell University

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Piezoelectric Micropump
Disc Pump
New
Mycoplasma Pneumoniae Virus Test
Mycoplasma Pneumoniae Virus Detection Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: Researcher Kanta Horie places a sample in a mass spectrometer that measures protein levels in blood plasma and other fluids (Photo courtesy of WashU Medicine)

Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression

Several blood tests are currently available to assist doctors in diagnosing Alzheimer's disease in individuals experiencing cognitive symptoms. However, these tests do not provide insights into the clinical... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Sekisui Diagnostics UK Ltd.