New Technique Detects Breaks in Mitochondrial DNA
|
By LabMedica International staff writers Posted on 22 Apr 2019 |

Image: A catalog of deletions (4,489) observed in brain samples derived from both healthy subjects and subjects with psychiatric disorders. The burden of deletions accumulates in various brain regions during aging. Many deletions play a major role in classical mitochondrial disorders, and deletion burden is viewed as an indicator of long lasting mitochondrial oxidative stress. Each colored ribbon is composed of individual lines showing the relative amount of deletions in brain samples in the catalog (Photo courtesy of the University of California, Irvine).
The Splice-Break pipeline is a recently described technique that can detect and quantify mitochondrial DNA (mtDNA) deletions at a high level of resolution.
Deletions in the mitochondrial genome have been implicated in numerous human disorders that often display muscular and/or neurological symptoms due to the high-energy demands of these tissues. Among these "mitochondrial myopathies" are Kearns–Sayre syndrome (KSS), Pearson Syndrome (PS), chronic progressive external ophthalmoplegia (CPEO), Leigh syndrome, and diabetes mellitus.
Investigators at the University of California, Irvine (USA) described a catalogue of 4,489 putative mtDNA deletions, including their frequency and relative read rate. To do this, they employed a combinatorial approach of mitochondria-targeted PCR, next-generation sequencing, bioinformatics, post-hoc filtering, annotation, and validation steps. Their bioinformatics pipeline incorporated MapSplice, an RNA-seq splice junction detection algorithm, to detect and quantify mtDNA deletion breakpoints rather than mRNA splices.
The investigators used their technique to analyze 93 samples from postmortem brain and blood. They found that the 4977-base pairs "common deletion" was neither the most frequent deletion nor the most abundant and that brain contained significantly more deletions than blood.
“Taken together, the pipeline will enable us to look in many brain regions for an accumulation of damage to mitochondria DNA for individuals with various psychiatric symptoms such as depression and psychosis. The ultimate use will be to test other more accessible samples such as blood, saliva, or cerebrospinal fluid from patients to estimate the damage to mitochondria, and quickly identify those individuals who may benefit from drugs and other treatments that give a mitochondria boost and improve psychiatric symptoms,” said senior author Dr. Marquis P. Vawter, a researcher in the department of psychiatry and human behavior at the University of California, Irvine. “This technique allows us to use a single test to measure the accumulation of many types of these deletions and to determine an overall burden of these deletions upon mitochondria functions.”
The study was published in the March 14, 2019, online edition of the journal Nucleic Acids Research.
Related Links:
University of California, Irvine
Deletions in the mitochondrial genome have been implicated in numerous human disorders that often display muscular and/or neurological symptoms due to the high-energy demands of these tissues. Among these "mitochondrial myopathies" are Kearns–Sayre syndrome (KSS), Pearson Syndrome (PS), chronic progressive external ophthalmoplegia (CPEO), Leigh syndrome, and diabetes mellitus.
Investigators at the University of California, Irvine (USA) described a catalogue of 4,489 putative mtDNA deletions, including their frequency and relative read rate. To do this, they employed a combinatorial approach of mitochondria-targeted PCR, next-generation sequencing, bioinformatics, post-hoc filtering, annotation, and validation steps. Their bioinformatics pipeline incorporated MapSplice, an RNA-seq splice junction detection algorithm, to detect and quantify mtDNA deletion breakpoints rather than mRNA splices.
The investigators used their technique to analyze 93 samples from postmortem brain and blood. They found that the 4977-base pairs "common deletion" was neither the most frequent deletion nor the most abundant and that brain contained significantly more deletions than blood.
“Taken together, the pipeline will enable us to look in many brain regions for an accumulation of damage to mitochondria DNA for individuals with various psychiatric symptoms such as depression and psychosis. The ultimate use will be to test other more accessible samples such as blood, saliva, or cerebrospinal fluid from patients to estimate the damage to mitochondria, and quickly identify those individuals who may benefit from drugs and other treatments that give a mitochondria boost and improve psychiatric symptoms,” said senior author Dr. Marquis P. Vawter, a researcher in the department of psychiatry and human behavior at the University of California, Irvine. “This technique allows us to use a single test to measure the accumulation of many types of these deletions and to determine an overall burden of these deletions upon mitochondria functions.”
The study was published in the March 14, 2019, online edition of the journal Nucleic Acids Research.
Related Links:
University of California, Irvine
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreMolecular Diagnostics
view channel
New Serum Marker-Editing Strategy to Improve Diagnosis of Neurological Diseases
Tracking gene-expression changes in the brain is crucial for understanding neurological diseases, yet current monitoring tools are invasive or unable to capture subtle activity shifts over time.... Read more
World’s First Genetic Type 1 Diabetes Risk Test Enables Early Detection
Type 1 Diabetes (T1D) affects more than eight million people worldwide, with numbers expected to rise sharply. While most cases are genetically driven, only one in ten patients has a family history, making... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Gene Signature Test Predicts Response to Key Breast Cancer Treatment
DK4/6 inhibitors paired with hormone therapy have become a cornerstone treatment for advanced HR+/HER2– breast cancer, slowing tumor growth by blocking key proteins that drive cell division.... Read more
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read moreMicrobiology
view channelRapid POC Tuberculosis Test Provides Results Within 15 Minutes
Tuberculosis remains one of the world’s deadliest infectious diseases, and reducing new cases depends on identifying individuals with latent infection before it progresses. Current diagnostic tools often... Read more
Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read morePathology
view channelAI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
Diagnosing blood disorders depends on recognizing subtle abnormalities in cell size, shape, and structure, yet this process is slow, subjective, and requires years of expert training. Even specialists... Read more
AI Tool Rapidly Analyzes Complex Cancer Images for Personalized Treatment
Complex digital biopsy images that typically take an expert pathologist up to 20 minutes to assess can now be analyzed in about one minute using a new artificial intelligence (AI) tool. The technology... Read moreTechnology
view channel
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read more
AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
Detecting lung cancer early remains one of the biggest challenges in oncology, largely because current tools are invasive, expensive, or unable to identify the disease in its earliest phases.... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








