LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Technique Detects Breaks in Mitochondrial DNA

By LabMedica International staff writers
Posted on 22 Apr 2019
Image: A catalog of deletions (4,489) observed in brain samples derived from both healthy subjects and subjects with psychiatric disorders. The burden of deletions accumulates in various brain regions during aging. Many deletions play a major role in classical mitochondrial disorders, and deletion burden is viewed as an indicator of long lasting mitochondrial oxidative stress. Each colored ribbon is composed of individual lines showing the relative amount of deletions in brain samples in the catalog (Photo courtesy of the University of California, Irvine).
Image: A catalog of deletions (4,489) observed in brain samples derived from both healthy subjects and subjects with psychiatric disorders. The burden of deletions accumulates in various brain regions during aging. Many deletions play a major role in classical mitochondrial disorders, and deletion burden is viewed as an indicator of long lasting mitochondrial oxidative stress. Each colored ribbon is composed of individual lines showing the relative amount of deletions in brain samples in the catalog (Photo courtesy of the University of California, Irvine).
The Splice-Break pipeline is a recently described technique that can detect and quantify mitochondrial DNA (mtDNA) deletions at a high level of resolution.

Deletions in the mitochondrial genome have been implicated in numerous human disorders that often display muscular and/or neurological symptoms due to the high-energy demands of these tissues. Among these "mitochondrial myopathies" are Kearns–Sayre syndrome (KSS), Pearson Syndrome (PS), chronic progressive external ophthalmoplegia (CPEO), Leigh syndrome, and diabetes mellitus.

Investigators at the University of California, Irvine (USA) described a catalogue of 4,489 putative mtDNA deletions, including their frequency and relative read rate. To do this, they employed a combinatorial approach of mitochondria-targeted PCR, next-generation sequencing, bioinformatics, post-hoc filtering, annotation, and validation steps. Their bioinformatics pipeline incorporated MapSplice, an RNA-seq splice junction detection algorithm, to detect and quantify mtDNA deletion breakpoints rather than mRNA splices.

The investigators used their technique to analyze 93 samples from postmortem brain and blood. They found that the 4977-base pairs "common deletion" was neither the most frequent deletion nor the most abundant and that brain contained significantly more deletions than blood.

“Taken together, the pipeline will enable us to look in many brain regions for an accumulation of damage to mitochondria DNA for individuals with various psychiatric symptoms such as depression and psychosis. The ultimate use will be to test other more accessible samples such as blood, saliva, or cerebrospinal fluid from patients to estimate the damage to mitochondria, and quickly identify those individuals who may benefit from drugs and other treatments that give a mitochondria boost and improve psychiatric symptoms,” said senior author Dr. Marquis P. Vawter, a researcher in the department of psychiatry and human behavior at the University of California, Irvine. “This technique allows us to use a single test to measure the accumulation of many types of these deletions and to determine an overall burden of these deletions upon mitochondria functions.”

The study was published in the March 14, 2019, online edition of the journal Nucleic Acids Research.

Related Links:
University of California, Irvine

Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sample Transportation System
Tempus1800 Necto
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more