LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

HDL‐C Levels Associated with Harmful CKD Progression

By LabMedica International staff writers
Posted on 17 Apr 2019
Image: A blood test for high‐density lipoprotein that may indicate adverse renal outcomes for patients with chronic kidney disease (Photo courtesy of Drs. Wolfson).
Image: A blood test for high‐density lipoprotein that may indicate adverse renal outcomes for patients with chronic kidney disease (Photo courtesy of Drs. Wolfson).
Serum high‐density lipoprotein (HDL) has traditionally been considered to be protective against cardiovascular disease in the general population. HDL exerts an antiatherogenic effect through reverse cholesterol transport, a multiorgan process that removes excess cholesterol from lipid‐laden macrophages and peripheral tissue.

Chronic kidney disease (CKD) has become a serious health concern worldwide, given the high burden of cardiovascular events and death in patients with this condition. Dyslipidemia is common in patients with CKD and is characterized by lower levels of HDL‐C and higher levels of triglyceride and oxidized low‐density lipoprotein cholesterol.

A team of scientists at Yonsei University (Seoul, South Korea) carried out a prospective nationwide cohort study investigating various clinical courses and risk factors for the progression of CKD in Korean patients. Patients, aged between 20 and 75 years, with CKD stages from 1 to 5 before dialysis, who voluntarily provided informed consent, were enrolled from nine tertiary‐care general hospitals throughout Korea between June 2011 and February 2016. There were 2,168 patients were included in the final analysis.

After overnight fasting, blood samples were collected for measurements of creatinine. Other biochemical analyses, including lipid profiles, were done at the local laboratory of each participating center. Most laboratory parameters were measured every six months in the first year and annually thereafter, including complete blood cell count, fasting glucose, blood urea nitrogen, creatinine, albumin, calcium, and phosphorus. C‐reactive protein, iron profiles (including total iron‐binding capacity and serum ferritin), and lipid profiles (including triglyceride, HDL‐C, and low‐density lipoprotein cholesterol) were measured repeatedly after one year and biennially thereafter. The team used a creatinine method that requires calibration traceable to isotope dilution mass spectrometry, and estimated glomerular filtration rate (eGFR) was calculated using the CKD. Urine samples were analyzed for proteinuria measurement. Urine albumin/creatinine ratio was calculated as the urine albumin concentration divided by the urine creatinine concentration (mg/g).

The team reported that the primary outcome was the composite of a 50% decline in eGFR from baseline or end‐stage renal disease. The secondary outcome was the onset of end‐stage renal disease. During a median follow‐up of 3.1 years, the primary outcome occurred in 335 patients (15.5%). In a fully adjusted Cox model, the lowest category with HDL‐C of <30 mg/dL (hazard ratio, 2.21) and the highest category with HDL‐C of ≥60 mg/dL (hazard ratio, 2.05) were associated with a significantly higher risk of the composite renal outcome, compared with the reference category with HDL‐C of 50 to 59 mg/dL. This association remained unaltered in a time‐varying Cox analysis. Furthermore, consistent findings were obtained in a secondary outcome analysis for the development of end‐stage renal disease.

The authors concluded that an U‐shaped association was observed between serum HDL‐C levels and adverse renal outcomes in this large cohort of patients with CKD. The findings suggest that both low and high serum HDL‐C levels may be detrimental to patients with non-dialysis CKD. The study was published on March 12, 2019, in the Journal of the American Heart Association.

Related Links:
Yonsei University

Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more