Pathology Differences Distinguish CTE from Azheimer's Disease
By LabMedica International staff writers Posted on 01 Apr 2019 |

Image: These images highlight the differences found in the tau folds associated with Alzheimer\'s disease and Chronic Traumatic Encephalopathy (CTE). They also show an unidentified element found in CTE that does not exist in Alzheimer\'s disease (Photo courtesy of Indiana University School of Medicine).
Neurological disease researchers have found an important difference that distinguishes the molecular pathology of Chronic Traumatic Encephalopathy (CTE) from that of Alzheimer's disease (AD).
CTE is a neurodegenerative tauopathy - a pathological aggregation of tau protein in neurofibrillary or gliofibrillary tangles in the brain - that is associated with repetitive head impacts or exposure to blast waves. It was described first as "punch-drunk syndrome" and dementia pugilistica in retired boxers, but has since been identified in former participants of other contact sports, ex-military personnel, and after physical abuse. No disease-modifying therapies currently exist, and diagnosis requires an autopsy. In AD, tau undergoes chemical changes, becoming hyperphosphorylated; it then begins to pair with other threads, creating neurofibrillary tangles and disintegrating the neuron's transport system.
Investigators at Indiana University School of Medicine (Indianapolis, USA) used cryo-electron microscopy (cryo-EM) to demonstrate a fundamental difference between the tau tangles of CTE and those of AD. Cryo-EM is an analytical technique that provides near-atomic structural resolution without requirements for crystallization or limits on molecular size and complexity imposed by the other techniques. Cryo-EM allows the observation of specimens that have not been stained or fixed in any way, showing them in their native environment while integrating multiple images to form a three-dimensional model of the sample.
The investigators determined the structures of tau filaments from the brains of three individuals with CTE at resolutions down to 2.3 Angstroms, using cryo-electron microscopy. They showed that filament structures were identical in the three cases but were distinct from those of Alzheimer’s and Pick’s diseases, and from those formed in vitro. In CTE, a different conformation of the beta-helix region created a hydrophobic cavity that was absent in tau filaments from the brains of patients with Alzheimer’s disease. This cavity enclosed an additional density that was not connected to tau, which suggested that the incorporation of cofactors may have a role in tau aggregation in CTE. The discovery of the difference between pathogenic tau of CTE and that of AD offers options for improved diagnosis and potential targeted treatments.
Contributing author Dr. Ruben Vidal, professor in the of pathology and laboratory medicine at Indiana University School of Medicine, said, "These two new discoveries provide more insights into CTE than had previously existed. The information will be incredibly valuable for the development of novel agents to help in diagnosis and therapeutics specifically designed for individuals fighting CTE."
The cryo-EM study was published in the March 20, 2019, online edition of the journal Nature.
Related Links:
Indiana University School of Medicine
CTE is a neurodegenerative tauopathy - a pathological aggregation of tau protein in neurofibrillary or gliofibrillary tangles in the brain - that is associated with repetitive head impacts or exposure to blast waves. It was described first as "punch-drunk syndrome" and dementia pugilistica in retired boxers, but has since been identified in former participants of other contact sports, ex-military personnel, and after physical abuse. No disease-modifying therapies currently exist, and diagnosis requires an autopsy. In AD, tau undergoes chemical changes, becoming hyperphosphorylated; it then begins to pair with other threads, creating neurofibrillary tangles and disintegrating the neuron's transport system.
Investigators at Indiana University School of Medicine (Indianapolis, USA) used cryo-electron microscopy (cryo-EM) to demonstrate a fundamental difference between the tau tangles of CTE and those of AD. Cryo-EM is an analytical technique that provides near-atomic structural resolution without requirements for crystallization or limits on molecular size and complexity imposed by the other techniques. Cryo-EM allows the observation of specimens that have not been stained or fixed in any way, showing them in their native environment while integrating multiple images to form a three-dimensional model of the sample.
The investigators determined the structures of tau filaments from the brains of three individuals with CTE at resolutions down to 2.3 Angstroms, using cryo-electron microscopy. They showed that filament structures were identical in the three cases but were distinct from those of Alzheimer’s and Pick’s diseases, and from those formed in vitro. In CTE, a different conformation of the beta-helix region created a hydrophobic cavity that was absent in tau filaments from the brains of patients with Alzheimer’s disease. This cavity enclosed an additional density that was not connected to tau, which suggested that the incorporation of cofactors may have a role in tau aggregation in CTE. The discovery of the difference between pathogenic tau of CTE and that of AD offers options for improved diagnosis and potential targeted treatments.
Contributing author Dr. Ruben Vidal, professor in the of pathology and laboratory medicine at Indiana University School of Medicine, said, "These two new discoveries provide more insights into CTE than had previously existed. The information will be incredibly valuable for the development of novel agents to help in diagnosis and therapeutics specifically designed for individuals fighting CTE."
The cryo-EM study was published in the March 20, 2019, online edition of the journal Nature.
Related Links:
Indiana University School of Medicine
Latest Clinical Chem. News
- AI-Powered Blood Test Accurately Detects Ovarian Cancer
- Automated Decentralized cfDNA NGS Assay Identifies Alterations in Advanced Solid Tumors
- Mass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
- First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
- Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse
- ‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
- Low-Cost Portable Screening Test to Transform Kidney Disease Detection
- New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
- Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
- Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
- AI-Powered Raman Spectroscopy Method Enables Rapid Drug Detection in Blood
- Novel LC-MS/MS Assay Detects Low Creatinine in Sweat and Saliva
- Biosensing Technology Breakthrough Paves Way for New Methods of Early Disease Detection
- New Saliva Test Rapidly Identifies Paracetamol Overdose
- POC Saliva Testing Device Predicts Heart Failure in 15 Minutes
- Screening Tool Detects Multiple Health Conditions from Single Blood Drop
Channels
Molecular Diagnostics
view channel
POC Oral Swab Test to Increase Chances of Pregnancy in IVF
Approximately 15% of couples of reproductive age experience involuntary childlessness. A significant reason for this is the growing trend of delaying family planning, a global shift that is expected to... Read more
Microbial Cell-Free DNA Test Accurately Identifies Pathogens Causing Pneumonia and Other Lung Infections
Bronchoalveolar lavage (BAL) is a commonly used procedure for diagnosing lung infections, especially in immunocompromised patients. However, standard tests often fail to pinpoint the exact pathogen, leading... Read moreHematology
view channel
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read more
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
New Blood Test Detects Up to Five Infectious Diseases at POC
Researchers have developed a prototype flow-through assay capable of detecting up to five different infections, with results that can be quickly analyzed and transmitted via a specialized smartphone app.... Read more
Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, led to 1.25 million deaths in 2023, with 13% of those occurring in people living with HIV. The current primary diagnostic method for... Read morePathology
view channel
Groundbreaking Chest Pain Triage Algorithm to Transform Cardiac Care
Cardiovascular disease is responsible for a third of all deaths worldwide, and chest pain is the second most common reason for emergency department (ED) visits. With EDs often being some of the busiest... Read more
AI-Based Liquid Biopsy Approach to Revolutionize Brain Cancer Detection
Detecting brain cancers remains extremely challenging, with many patients only receiving a diagnosis at later stages after symptoms like headaches, seizures, or cognitive issues appear. Late-stage diagnoses... Read moreTechnology
view channel
Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read moreIndustry
view channel
Qiagen Acquires NGS Analysis Software Company Genoox
QIAGEN (Venlo, the Netherlands) has signed a definitive agreement to acquire Genoox (Tel Aviv, Israel), a provider of artificial intelligence (AI)-powered software that enables clinical labs to scale and... Read more
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more