Fluorescence-Based Method Detects Misfolded Proteins in Cells
|
By LabMedica International staff writers Posted on 25 Feb 2019 |

Image: The new AggTag method allows researchers to see the previously undetectable but potentially disease-causing intermediate forms of proteins as they misfold. The method uses fluorescence to simultaneously detect two different proteins (red, green) within the cell (blue) (Photo courtesy of the Zhang Laboratory, Pennsylvania State University).
A new fluorescence-based method is expected to boost studies on toxic insoluble proteins by detecting aggregation of two proteins in live cells simultaneously.
Protein aggregation involves the assembly of partially misfolded proteins into oligomeric and higher‐order structures that have been associated with several neurodegenerative diseases. However, numerous questions regarding protein aggregation remain unanswered due to the lack of available tools to visualize these species in living cells.
In this regard, investigators at Pennsylvania State University (University Park, USA) recently (published in the June 8, 2018, online edition of the Journal of the American Chemical Society) developed a fluorogenic method named Aggregation Tag (AggTag), and presented the AggTag probe P1 based on a Halo‐tag ligand to report on the aggregation of a protein of interest in live cells. Halo-tag is a self-labeling protein tag. It is a 297-residue peptide derived from a bacterial enzyme, designed to covalently bind to a synthetic ligand of choice and fuse to a protein of interest. The Halo-tag is composed of two covalently bound segments including a haloalkane dehalogenase and a synthetic ligand of choice. These synthetic ligands consist of a reactive chloroalkane linker bound to a functional group such as biotin or a fluorescent dye, which can be used in the visualization of either living or chemically fixed cells.
Since the Halo‐tag based AggTag method only detected the aggregation of one specific protein of interest at a time, the investigators expanded the AggTag method by using SNAP‐tag technology to enable fluorogenic and biorthogonal detection of the aggregation of two different proteins of interest simultaneously in live cells. A new AggTag probe P2 based on a SNAP‐tag ligand bearing a green fluorescent label was synthesized for this purpose. SNAP-tag is a self-labeling protein tag commercially available in various expression vectors. It is a 182 residues polypeptide that can be fused to any protein of interest and further specifically and covalently tagged with a suitable ligand, such as a fluorescent dye.
The investigators reported in the January 4, 2019, online edition of the journal ChemBioChem that by using confocal imaging and chemical crosslinking experiments, they were able to confirm that P2 could also report on both soluble oligomers and insoluble aggregates of a protein of interest fused with SNAP‐tag in live cells. In addition, they showed that the orthogonal fluorescence of P1 and P2 allowed for simultaneous visualization of two different pathogenic protein aggregates in the same cells.
"In order to function properly, proteins fold into very precise structures, but environmental stress or pathogenic mutations can cause proteins to misfold and aggregate," said senior author Dr. Xin Zhang, assistant professor of chemistry, biochemistry, and molecular biology at Pennsylvania State University. "Protein aggregation is a multi-step process, and it is believed that the intermediate form, which previous imaging techniques could not detect, is responsible for a number of diseases, including Alzheimer's, Parkinson's, Type II diabetes, and cystic fibrosis. We developed the Aggregation Tag method--AggTag--to see these previously undetectable intermediates--soluble oligomers--as well the final aggregates in live cells."
"We plan to continue developing this method so that we can signal the transition of oligomers into insoluble aggregates using a color change," said Dr. Zhang. "This method provides a new toolbox to study protein aggregation, which is currently a highly studied topic among scientists. Hopefully this will allow us to better understand the entire process of protein aggregation and the role of each of these forms in the progression of neurodegenerative and other diseases."
Related Links:
Pennsylvania State University
Protein aggregation involves the assembly of partially misfolded proteins into oligomeric and higher‐order structures that have been associated with several neurodegenerative diseases. However, numerous questions regarding protein aggregation remain unanswered due to the lack of available tools to visualize these species in living cells.
In this regard, investigators at Pennsylvania State University (University Park, USA) recently (published in the June 8, 2018, online edition of the Journal of the American Chemical Society) developed a fluorogenic method named Aggregation Tag (AggTag), and presented the AggTag probe P1 based on a Halo‐tag ligand to report on the aggregation of a protein of interest in live cells. Halo-tag is a self-labeling protein tag. It is a 297-residue peptide derived from a bacterial enzyme, designed to covalently bind to a synthetic ligand of choice and fuse to a protein of interest. The Halo-tag is composed of two covalently bound segments including a haloalkane dehalogenase and a synthetic ligand of choice. These synthetic ligands consist of a reactive chloroalkane linker bound to a functional group such as biotin or a fluorescent dye, which can be used in the visualization of either living or chemically fixed cells.
Since the Halo‐tag based AggTag method only detected the aggregation of one specific protein of interest at a time, the investigators expanded the AggTag method by using SNAP‐tag technology to enable fluorogenic and biorthogonal detection of the aggregation of two different proteins of interest simultaneously in live cells. A new AggTag probe P2 based on a SNAP‐tag ligand bearing a green fluorescent label was synthesized for this purpose. SNAP-tag is a self-labeling protein tag commercially available in various expression vectors. It is a 182 residues polypeptide that can be fused to any protein of interest and further specifically and covalently tagged with a suitable ligand, such as a fluorescent dye.
The investigators reported in the January 4, 2019, online edition of the journal ChemBioChem that by using confocal imaging and chemical crosslinking experiments, they were able to confirm that P2 could also report on both soluble oligomers and insoluble aggregates of a protein of interest fused with SNAP‐tag in live cells. In addition, they showed that the orthogonal fluorescence of P1 and P2 allowed for simultaneous visualization of two different pathogenic protein aggregates in the same cells.
"In order to function properly, proteins fold into very precise structures, but environmental stress or pathogenic mutations can cause proteins to misfold and aggregate," said senior author Dr. Xin Zhang, assistant professor of chemistry, biochemistry, and molecular biology at Pennsylvania State University. "Protein aggregation is a multi-step process, and it is believed that the intermediate form, which previous imaging techniques could not detect, is responsible for a number of diseases, including Alzheimer's, Parkinson's, Type II diabetes, and cystic fibrosis. We developed the Aggregation Tag method--AggTag--to see these previously undetectable intermediates--soluble oligomers--as well the final aggregates in live cells."
"We plan to continue developing this method so that we can signal the transition of oligomers into insoluble aggregates using a color change," said Dr. Zhang. "This method provides a new toolbox to study protein aggregation, which is currently a highly studied topic among scientists. Hopefully this will allow us to better understand the entire process of protein aggregation and the role of each of these forms in the progression of neurodegenerative and other diseases."
Related Links:
Pennsylvania State University
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







