LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Plasma Lactate Measurement Used to Test Variability

By LabMedica International staff writers
Posted on 05 Nov 2018
Image: The Cobas 6000 analyzer series for clinical chemistry and immunochemistry assays (Photo courtesy of Roche Diagnostics).
Image: The Cobas 6000 analyzer series for clinical chemistry and immunochemistry assays (Photo courtesy of Roche Diagnostics).
Clinical laboratories are required to adhere to manufacturers’ recommended sample handling instructions as part of their compliance with accreditation certification. However, manufacturer's recommendations do not always reflect current practice and deviations from recommendations necessitate extensive validation studies.

Lactate is an intermediary metabolite produced in relatively anaerobic conditions. Measurement of circulating lactate level is useful in assessing tissue perfusion in critically ill patients and in those being suspected of sepsis. It is produced by many cells and circulating levels reflect rate of production and of metabolism by the body.

Laboratory scientists at Parkland Health and Hospital System (Dallas, TX, USA) and their colleagues collected triple blood samples from a total of 123 samples from 51 patients (23 females, 28 males) with age ranging from 23 to 83 (mean 53) years, being investigated for sepsis, hemodynamic and associated metabolic abnormalities and from 50 normal volunteers (37 females, 13 males) with age ranging from 31 to 59 (mean 50) years. One tube was transported on ice (4 °C); the others were maintained at room temperature (23 °C). Tubes stored at 4 °C were processed at 30 minutes from collection. Tubes stored at 23 °C were processed at 15 and at 30 minutes from collection. Lactate levels were measured using Roche Diagnostics Cobas 6000 analyzer.

The team reported that lactate levels in normal subjects ranged from 0.6 to 3.1 mmol/L (median 1.1). Patient lactate levels ranged from 0.8 to 26.3 mmol/L (median 2.2). Bias in lactate levels following extended storage of samples from both normal subjects and patients ranged from −1.3 to 2.2 and from −1.0 to 1.0 mmol/L when stored for 30 minutes at 23 °C or at 4 °C, respectively. The bias between lactate levels at 30 minutes at 23 °C and 4 °C was −1.2 to −0.5 mmol/L for both populations. Although the bias was not statistically significant for all variables, a clinically significant (>0.2 mmol/L) bias was observed in 28% of normal and 7.0% of patient samples.

The authors concluded that achieving full compliance with recommended 15 minutes sample collection and handling time is unlikely to be met by most institutions and will thus impact lactate results. It would be helpful if manufacturers would consider, when developing guidelines on sample stability and on assays performance, constraints often seen in routine clinical practice. The study was published on October 24, 2018, in the journal Practical Laboratory Medicine.

Related Links:
Parkland Health and Hospital System

Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Gold Member
Collection and Transport System
PurSafe Plus®

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more