Diagnostic Methods Compared for Detection of Malaria
By LabMedica International staff writers Posted on 04 Oct 2018 |

Image: The NADAL Malaria 4 species test (RDT) (Photo courtesy of Nal von Minden).
The main strategy for malaria control is quick and accurate diagnosis followed by effective treatment. The early and accurate diagnosis of malaria is essential for both effective disease management and malaria surveillance.
Microscopy is still considered the “gold standard” for malaria diagnosis in endemic countries, but microscopy has low sensitivity when performed by poorly trained personnel in endemic areas, especially in primary and secondary healthcare facilities. Rapid detection tests (RDTs) for malaria are widespread but constrained by false results, while polymerase chain reaction (PCR) is the most sensitive method available is it not appropriate for field use.
Tropical medicine specialists at the Institute of Health Carlos III (Madrid, Spain) and their colleagues recruited a total of 1,741 individuals; 1,043 and 698 people living in urban and rural settings, respectively, living in Equatorial Guinea. Blood samples were taken from the finger for the diagnosis of malaria using malaria RDTs and microscopy. The blood was spotted on Whatman 903 paper for further molecular studies.
The NADAL Malaria 4 species test (Test cassette) was used as the RDT in situ. The test enables differential diagnosis between Plasmodium malariae, P. falciparum, P. vivax, and P. ovale in human whole blood samples. Semi-nested multiplex PCR (SnM-PCR) was performed after the DNA was extracted from the filter papers. The SnM-PCR used in this study for the diagnosis of malaria has a sensitivity of 0.0001 parasites/μL.
The team reported that among the negative samples detected by microscopy, 335 (19.4%) were false negatives. On the other hand, the negative samples detected by RDT, 128 (13.3%) were false negatives based on PCR. This finding is important, especially since it is a group of patients who did not receive antimalarial treatment. RDT showed higher sensitivity than microscopy in all age groups. Both diagnostic tools showed higher sensitivity in children aged 13 months to 5 years, decreasing as age increase. RDTs also showed higher specificity than microscopy in all age groups, being both techniques more specific in children under 12 months of age and above 15 years old.
The authors concluded although RDTs are used as diagnostic methods, diagnosis by microscopy should never be abandoned because it is the gold standard in endemic areas. In addition, microscopy allows the calculation of parasitic densities and identification of all species and is cheaper than the other methods. Although it is the best diagnostic method with high sensitivity and specificity, PCR is still costly and not very useful for routine diagnosis. The study was published on September 17, 2018, in the Malaria Journal.
Related Links:
Institute of Health Carlos III
Microscopy is still considered the “gold standard” for malaria diagnosis in endemic countries, but microscopy has low sensitivity when performed by poorly trained personnel in endemic areas, especially in primary and secondary healthcare facilities. Rapid detection tests (RDTs) for malaria are widespread but constrained by false results, while polymerase chain reaction (PCR) is the most sensitive method available is it not appropriate for field use.
Tropical medicine specialists at the Institute of Health Carlos III (Madrid, Spain) and their colleagues recruited a total of 1,741 individuals; 1,043 and 698 people living in urban and rural settings, respectively, living in Equatorial Guinea. Blood samples were taken from the finger for the diagnosis of malaria using malaria RDTs and microscopy. The blood was spotted on Whatman 903 paper for further molecular studies.
The NADAL Malaria 4 species test (Test cassette) was used as the RDT in situ. The test enables differential diagnosis between Plasmodium malariae, P. falciparum, P. vivax, and P. ovale in human whole blood samples. Semi-nested multiplex PCR (SnM-PCR) was performed after the DNA was extracted from the filter papers. The SnM-PCR used in this study for the diagnosis of malaria has a sensitivity of 0.0001 parasites/μL.
The team reported that among the negative samples detected by microscopy, 335 (19.4%) were false negatives. On the other hand, the negative samples detected by RDT, 128 (13.3%) were false negatives based on PCR. This finding is important, especially since it is a group of patients who did not receive antimalarial treatment. RDT showed higher sensitivity than microscopy in all age groups. Both diagnostic tools showed higher sensitivity in children aged 13 months to 5 years, decreasing as age increase. RDTs also showed higher specificity than microscopy in all age groups, being both techniques more specific in children under 12 months of age and above 15 years old.
The authors concluded although RDTs are used as diagnostic methods, diagnosis by microscopy should never be abandoned because it is the gold standard in endemic areas. In addition, microscopy allows the calculation of parasitic densities and identification of all species and is cheaper than the other methods. Although it is the best diagnostic method with high sensitivity and specificity, PCR is still costly and not very useful for routine diagnosis. The study was published on September 17, 2018, in the Malaria Journal.
Related Links:
Institute of Health Carlos III
Latest Technology News
- Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
- Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
- Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
- Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
- Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
- Smartphones Could Diagnose Diseases Using Infrared Scans
- Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
- 3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
- POC Paper-Based Sensor Platform to Transform Cardiac Diagnostics
- Study Explores Impact of POC Testing on Future of Diagnostics
- Low-Cost, Fast Response Sensor Enables Early and Accurate Detection of Lung Cancer
- Nanotechnology For Cervical Cancer Diagnosis Could Replace Invasive Pap Smears
- Lab-On-Chip Platform to Expedite Cancer Diagnoses
- Biosensing Platform Simultaneously Detects Vitamin C and SARS-CoV-2
- New Lens Method Analyzes Tears for Early Disease Detection
- FET-Based Sensors Pave Way for Portable Diagnostic Devices Capable of Detecting Multiple Diseases
Channels
Clinical Chemistry
view channel
AI-Powered Blood Test Accurately Detects Ovarian Cancer
Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more
Automated Decentralized cfDNA NGS Assay Identifies Alterations in Advanced Solid Tumors
Current circulating cell-free DNA (cfDNA) assays are typically centralized, requiring specialized handling and transportation of samples. Introducing a flexible, decentralized sequencing system at the... Read moreMass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more
First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read moreMolecular Diagnostics
view channel
Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD
Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more
First-in-Class Diagnostic Blood Test Detects Axial Spondyloarthritis
Axial spondyloarthritis (axSpA) is a chronic inflammatory autoimmune condition that typically affects individuals during their most productive years, with symptoms often emerging before the age of 45.... Read more
New Molecular Label to Help Develop Simpler and Faster Tuberculosis Tests
Tuberculosis (TB), the deadliest infectious disease globally, is responsible for infecting an estimated 10 million people each year and causing over 1 million deaths annually. While chest X-rays and molecular... Read more
Biomarker Discovery Paves Way for Blood Tests to Detect and Treat Osteoarthritis
The number of individuals affected by osteoarthritis is projected to exceed 1 billion by 2050. The primary risk factor for this common, often painful chronic joint condition is aging, and, like aging itself,... Read moreHematology
view channel
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read more
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read morePathology
view channel
Groundbreaking Chest Pain Triage Algorithm to Transform Cardiac Care
Cardiovascular disease is responsible for a third of all deaths worldwide, and chest pain is the second most common reason for emergency department (ED) visits. With EDs often being some of the busiest... Read more
AI-Based Liquid Biopsy Approach to Revolutionize Brain Cancer Detection
Detecting brain cancers remains extremely challenging, with many patients only receiving a diagnosis at later stages after symptoms like headaches, seizures, or cognitive issues appear. Late-stage diagnoses... Read moreTechnology
view channel
Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more