LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Analysis of Nasal Polyps Suggests Mechanisms of Inflammation

By LabMedica International staff writers
Posted on 04 Sep 2018
Image: Diagram of the Seq-Well low-cost platform for single-cell RNA sequencing (Photo courtesy of Shalek Lab).
Image: Diagram of the Seq-Well low-cost platform for single-cell RNA sequencing (Photo courtesy of Shalek Lab).
Allergic inflammation can develop from persistent activation of type 2 immunity in the upper airway, resulting in chronic rhinosinusitis, which ranges in severity from rhinitis to severe nasal polyps.

Basal cell hyperplasia is a hallmark of severe disease, but it is not known how these progenitor cells contribute to clinical presentation and barrier tissue dysfunction in humans. In an effort to elucidate molecular mechanisms of chronic inflammatory diseases, scientists have profiled the transcriptomes of human nasal polyps and nasal scrapings by single-cell RNA sequencing.

Scientists at Brigham and Women's Hospital (Boston, MA, USA) and their colleagues performed single-cell RNA sequencing on more than 18,000 cells from 12 surgically removed nasal polyps spanning the disease spectrum. They used Seq-Well for massively parallel single-cell RNA sequencing, report transcriptomes for human respiratory epithelial, immune and stromal cell types and subsets from a type 2 inflammatory disease, and map key mediators. Seq-Well is a portable, low-cost platform for single-cell RNA sequencing designed to be compatible with low-input, clinical biopsies.

The investigators found that the diversity of epithelial cell types was reduced in the nasal polyps, which contained few glandular and ciliated cells and were enriched in basal cells. The latter appeared to be stuck in their ability to differentiate into other cell types. This reduction in cellular diversity might be explained by differences in gene expression the scientists found between polyp and non-polyp basal progenitor cells. In addition, they revealed that a transcriptional program that is activated by cytokines interleukin-4 (IL-4 ) and IL-13 is strongly induced in basal progenitor cells from polyps, suggesting a possible treatment with an antibody that blocks the shared IL-4/IL-13 receptor subunit.

The authors concluded that that reduced epithelial diversity stemming from functional shifts in basal cells is a key characteristic of type 2 immune-mediated barrier tissue dysfunction. Their results demonstrate that epithelial stem cells may contribute to the persistence of human disease by serving as repositories for allergic memories. The study was published on August 22, 2018, in the journal Nature.

Related Links:
Brigham and Women's Hospital

Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Hybrid Pipette
SWITCH
Sample Transportation System
Tempus1800 Necto

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more