LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Novel Sensory Chip for Rapid Detection of Illegal Drugs

By LabMedica International staff writers
Posted on 22 May 2018
Print article
Image: A scanning electron microscope image shows the surface of a new chemical sensing chip. The surface consists of gold nanoparticles (small bright dots) that have been deposited over silver nanoparticles (light gray regions) to form a hybrid gold-silver nanostructure (Photo courtesy of Nan Zhang, University at Buffalo).
Image: A scanning electron microscope image shows the surface of a new chemical sensing chip. The surface consists of gold nanoparticles (small bright dots) that have been deposited over silver nanoparticles (light gray regions) to form a hybrid gold-silver nanostructure (Photo courtesy of Nan Zhang, University at Buffalo).
A novel sensory chip is expected to serve as the basis for a low-cost diagnostic platform for the rapid detection of illegal drugs such as cocaine.

The chip represents an expanded application for surface‐enhanced Raman spectroscopy (SERS). Raman spectroscopy exploits the inelastic scattering (so-called “Raman” scattering) phenomena to detect spectral signatures of important disease progression biomarkers, including lipids, proteins, and amino acids. A surface enhanced Raman spectroscopy technique enables determination of the conformation of molecules at low micromolar concentrations. Unlike conventional surface enhanced Raman spectroscopy, this approach does not require immobilization of molecules.

Investigators at the University at Buffalo (NY, USA) fabricated a superabsorbing metasurface chip with hybrid silver-gold nanostructures. A two‐step process of deposition plus subsequent thermal annealing was developed to shrink the gap among the metallic nanoparticles with no top‐down lithography technology involved. Because of the light trapping strategy enabled by the hybrid silver-gold metasurface structure, the excitation laser energy could be localized at the edges of the nanoparticles more efficiently, resulting in enhanced sensing resolution. Since more hot spots were excited over a given area with higher density of small nanoparticles, the spatial distribution of the localized field was more uniform, resulting in superior performance for potential quantitative sensing of drugs such as cocaine and chemicals with thiol groups. Furthermore, the final coating of a second gold nanoparticle layer improved the reliability of the chip, which was shown to be effective after 12 months storage at ambient temperature.

The investigators wrote in the May 7, 2018, online edition of the journal Small Methods that the chip had the potential to be integrated into a handheld, portable device for detecting drugs in biological samples such as blood, breath, urine, or saliva.

"Currently, there is a great demand for on-site drug testing," said senior author Dr. Qiaoqiang Gan, associate professor of electrical engineering at the University at Buffalo. "The high-performance chip we designed was able to detect cocaine within minutes in our experiments. It's also inexpensive: It can be produced using raw materials that cost around 10 cents, and the fabrication techniques we used are also low-cost. In the future, we are hoping to also use this technology to detect other drugs, including marijuana. "The widening legalization of marijuana raises a lot of societal issues, including the need for a system to quickly test drivers for drug use."

Related Links:
University at Buffalo

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Fecal DNA Extraction Kit
QIAamp PowerFecal Pro DNA Kit
New
Binocular Laboratory LED Illuminated Microscope
HumaScope Classic LED

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.