LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Cell-based Gene Therapy Treatment Cures Hemophilia B in Model

By LabMedica International staff writers
Posted on 17 May 2018
Print article
Image: Left two panels: Hepatocyte-like cells (HLCs) differentiated from the stem cells of patients with hemophilia B show very low levels of clotting factor IX, (FIX), shown in white. Right two panels: After treating these same cell lines with a gene correction tool, FIX increased to healthy levels (Photo courtesy of the Salk Institute).
Image: Left two panels: Hepatocyte-like cells (HLCs) differentiated from the stem cells of patients with hemophilia B show very low levels of clotting factor IX, (FIX), shown in white. Right two panels: After treating these same cell lines with a gene correction tool, FIX increased to healthy levels (Photo courtesy of the Salk Institute).
A novel, cell-based gene therapy approach was used to cure hemophilia B in a mouse model of the disease.

Hemophilia B, a blood-clotting disorder caused by defects in the gene encoding the protein-clotting factor IX (FIX) is considered to be an appropriate target for gene- and cell-based therapies due to its monogenic nature and broad therapeutic index.

Toward this end, investigators at the Salk Institute (La Jolla, CA, USA) used their FIX-deficient mouse model to evaluate the use of cell therapy as a potential long-term cure for hemophilia B. Initially, they showed that transplanted, cryopreserved, cadaveric human hepatocytes remained functional for more than a year and secreted FIX at therapeutic levels. Hepatocytes from different sources (companies and donors) performed comparably in curing the bleeding defect.

Next, the investigators generated induced pluripotent stem cells (iPSCs) from two hemophilia B patients and used the CRISPR/Cas9 gene-editing tool to correct the disease-causing mutations. These corrected iPSCs were coaxed into differentiating into hepatocyte-like cells (HLCs) and were then transplanted into hemophilic mice.

Results published in the May 1, 2018, online edition of the journal Cell Reports revealed that the transplanted iPSC-HLCs produced enough FIX to enable the mice to form normal blood clots, and that the cells continued to survive and produce FIX for at least nine to 12 months.

"The appeal of a cell-based approach is that you minimize the number of treatments that a patient needs," said first author Dr. Suvasini Ramaswamy, a former research associate at the Salk Institute. "Rather than constant injections, you can do this in one shot."

Related Links:
Salk Institute

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Community-Acquired Pneumonia Test
RIDA UNITY CAP Bac
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.