Near-Patient Hepatitis C Assay Validated
By LabMedica International staff writers Posted on 17 May 2018 |

Image: The Genedrive HCV ID kit is a qualitative assay providing results in 90 minutes in a decentralized environment (Photo courtesy of Genedrive).
Chronic infection with hepatitis C virus (HCV) is a major public health problem, estimated to infect 1.0% of the world’s population (71 million people) and to be responsible for 400, 000 annual deaths as a result of cirrhosis and liver cancer.
A hand-held, portable device that weighs approximately 600 grams or a little more than 21 ounces has been validated as a point-of-care molecular diagnostics system and assay for hepatitis C virus. A new study demonstrated proof of concept for a semi-quantitative assessment of HCV viral load using melting peak ratiometric analysis.
A team of international scientists collaborating with those at the Institute Pasteur (Paris, France) tested 130 clinical plasma and serum samples across three instruments and four operators. Samples were collected from various African countries, including Ghana, Kenya, Mauritius, Mozambique, Nigeria, South Africa, Uganda, and Zimbabwe, as part of routine HCV diagnostic testing using the Abbott RealTime HCV Genotype II on the Abbott m2000.
The team validated the Genedrive HCV point-of-care (POC) assay, which is a two-step procedure requiring a plasma or serum preparation step, followed by a reverse transcription (RT) reaction to generate the complementary DNA (cDNA) from the target HCV RNA. This cDNA undergoes asymmetric polymerase chain reaction (PCR) to generate linear amplification of single stranded products, followed by detection using a secondary hybridization probe and dissociation curve analysis.
The point-of-care assay identified all major HCV genotypes, with a limit of detection of 2,362 IU/mL (95% CI 1966 to 2788). Using 422 patients chronically infected with HCV and 503 controls negative for anti-HCV and HCV RNA, the Genedrive HCV assay showed 98.6% sensitivity (95% CI 96.9% to 99.5%) and 100% specificity (95% CI 99.3% to 100%) to detect HCV. In addition, melting peak ratiometric analysis demonstrated proof-of-principle for semi- quantification of HCV. The test was further validated in a real clinical setting in a resource-limited country.
The authors concluded that they had provided proof of concept in a real-life clinical setting that the Genedrive HCV assay has great potential to provide an affordable and robust instrument for decentralized HCV Nucleic Acid Amplification Testing (NAAT). This highly sensitive and specific test has recently obtained CE-IVD certification and is positioned to enable real-time treatment management of patients with chronic HCV in any clinical setting. The study was published on April 3, 2018, in the journal BMJ Gut.
Related Links:
Institute Pasteur
A hand-held, portable device that weighs approximately 600 grams or a little more than 21 ounces has been validated as a point-of-care molecular diagnostics system and assay for hepatitis C virus. A new study demonstrated proof of concept for a semi-quantitative assessment of HCV viral load using melting peak ratiometric analysis.
A team of international scientists collaborating with those at the Institute Pasteur (Paris, France) tested 130 clinical plasma and serum samples across three instruments and four operators. Samples were collected from various African countries, including Ghana, Kenya, Mauritius, Mozambique, Nigeria, South Africa, Uganda, and Zimbabwe, as part of routine HCV diagnostic testing using the Abbott RealTime HCV Genotype II on the Abbott m2000.
The team validated the Genedrive HCV point-of-care (POC) assay, which is a two-step procedure requiring a plasma or serum preparation step, followed by a reverse transcription (RT) reaction to generate the complementary DNA (cDNA) from the target HCV RNA. This cDNA undergoes asymmetric polymerase chain reaction (PCR) to generate linear amplification of single stranded products, followed by detection using a secondary hybridization probe and dissociation curve analysis.
The point-of-care assay identified all major HCV genotypes, with a limit of detection of 2,362 IU/mL (95% CI 1966 to 2788). Using 422 patients chronically infected with HCV and 503 controls negative for anti-HCV and HCV RNA, the Genedrive HCV assay showed 98.6% sensitivity (95% CI 96.9% to 99.5%) and 100% specificity (95% CI 99.3% to 100%) to detect HCV. In addition, melting peak ratiometric analysis demonstrated proof-of-principle for semi- quantification of HCV. The test was further validated in a real clinical setting in a resource-limited country.
The authors concluded that they had provided proof of concept in a real-life clinical setting that the Genedrive HCV assay has great potential to provide an affordable and robust instrument for decentralized HCV Nucleic Acid Amplification Testing (NAAT). This highly sensitive and specific test has recently obtained CE-IVD certification and is positioned to enable real-time treatment management of patients with chronic HCV in any clinical setting. The study was published on April 3, 2018, in the journal BMJ Gut.
Related Links:
Institute Pasteur
Latest Technology News
- Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
- Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
- Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
- Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
- Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
- Smartphones Could Diagnose Diseases Using Infrared Scans
- Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
- 3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
- POC Paper-Based Sensor Platform to Transform Cardiac Diagnostics
- Study Explores Impact of POC Testing on Future of Diagnostics
- Low-Cost, Fast Response Sensor Enables Early and Accurate Detection of Lung Cancer
- Nanotechnology For Cervical Cancer Diagnosis Could Replace Invasive Pap Smears
- Lab-On-Chip Platform to Expedite Cancer Diagnoses
- Biosensing Platform Simultaneously Detects Vitamin C and SARS-CoV-2
- New Lens Method Analyzes Tears for Early Disease Detection
- FET-Based Sensors Pave Way for Portable Diagnostic Devices Capable of Detecting Multiple Diseases
Channels
Clinical Chemistry
view channel
AI-Powered Blood Test Accurately Detects Ovarian Cancer
Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more
Automated Decentralized cfDNA NGS Assay Identifies Alterations in Advanced Solid Tumors
Current circulating cell-free DNA (cfDNA) assays are typically centralized, requiring specialized handling and transportation of samples. Introducing a flexible, decentralized sequencing system at the... Read moreMass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more
First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read moreMolecular Diagnostics
view channel
POC Oral Swab Test to Increase Chances of Pregnancy in IVF
Approximately 15% of couples of reproductive age experience involuntary childlessness. A significant reason for this is the growing trend of delaying family planning, a global shift that is expected to... Read more
Microbial Cell-Free DNA Test Accurately Identifies Pathogens Causing Pneumonia and Other Lung Infections
Bronchoalveolar lavage (BAL) is a commonly used procedure for diagnosing lung infections, especially in immunocompromised patients. However, standard tests often fail to pinpoint the exact pathogen, leading... Read moreHematology
view channel
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read more
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read morePathology
view channel
Groundbreaking Chest Pain Triage Algorithm to Transform Cardiac Care
Cardiovascular disease is responsible for a third of all deaths worldwide, and chest pain is the second most common reason for emergency department (ED) visits. With EDs often being some of the busiest... Read more
AI-Based Liquid Biopsy Approach to Revolutionize Brain Cancer Detection
Detecting brain cancers remains extremely challenging, with many patients only receiving a diagnosis at later stages after symptoms like headaches, seizures, or cognitive issues appear. Late-stage diagnoses... Read moreTechnology
view channel
Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read moreIndustry
view channel
Qiagen Acquires NGS Analysis Software Company Genoox
QIAGEN (Venlo, the Netherlands) has signed a definitive agreement to acquire Genoox (Tel Aviv, Israel), a provider of artificial intelligence (AI)-powered software that enables clinical labs to scale and... Read more
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more