LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Minor Blood Group Antigens Deleted by Gene Editing

By LabMedica International staff writers
Posted on 12 May 2018
Print article
Image: Synthetic biologists have succeeded in generating laboratory-made red blood cells deficient in minor blood group antigens (Photo courtesy of Dr. Ashley Toye, University of Bristol).
Image: Synthetic biologists have succeeded in generating laboratory-made red blood cells deficient in minor blood group antigens (Photo courtesy of Dr. Ashley Toye, University of Bristol).
The CRISPR/Cas9 gene-editing tool was used to create a line of red blood cells for transfusion that was completely deficient in blood groups encoded by five different genes that generate antigens responsible for the most common transfusion incompatibilities.

Regular blood transfusion is the basis of care for patients with red blood cell (RBC) disorders such as thalassemia or sickle‐cell disease. However, repeated transfusions will often cause patients to develop an immune response to all but the most specifically matched donor blood due to incompatibility at the level of minor blood group antigens.

To eliminate the most common minor blood group antigens from donor blood cells, investigators at the University of Bristol (United Kingdom) used CRISPR‐mediated genome editing of an immortalized human erythroblast cell line (BEL‐A) to generate multiple competent cell lines deficient in individual blood group antigens.

CRISPR/Cas9 is regarded as the cutting edge of molecular biology technology. CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. Since 2013, the CRISPR/Cas9 system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 enzyme and appropriate guide RNAs (sgRNAs) into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR/Cas9 system is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides that shepherd the Cas9 protein to the target gene on a DNA strand.

The investigators reported in the April 26, 2018, online edition of the journal EMBO Molecular Medicine that by simultaneously expressing multiple guide RNAs in these cells, they demonstrated the ability to delete multiple blood group genes in erythroblasts and presented proof‐of‐principle generation of red blood cells completely deficient in blood groups encoded by five different genes that encode antigens responsible for the most common transfusion incompatibilities: ABO (Bombay phenotype), Rh (Rh-null), Kell (K0), Duffy (Duffy-null), and GPB (S-s-U-).

Senior author Dr. Ashley Toye, reader in cell biology at the University of Bristol, said, "Blood made using genetically edited cells could one day provide compatible transfusions for a group of patients for whom blood matching is difficult or impossible to achieve within the donor population. However, much more work will still be needed to produce blood cells suitable for patient use."

Related Links:
University of Bristol

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
TORCH Infections Test
TORCH Panel
New
Toxoplasma Gondii Immunoassay
Toxo IgM AccuBind ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.