Image Analysis System Quantifies NASH Disease Activity
|
By LabMedica International staff writers Posted on 25 Apr 2018 |

Image: A histopathology micrograph of a liver biopsy showing of steatohepatitis showing balloon degeneration of hepatocytes, a form of apoptosis (Photo courtesy of Nephron).
Non-alcoholic steatohepatitis (NASH) is the progressive form of non-alcoholic fatty liver disease (NAFLD), in which excessive fat accumulates in the liver of individuals who do not have a history of alcohol abuse.
NAFLD is regarded as a hepatic manifestation of metabolic syndrome, with the number of individuals with NAFLD/NASH increasing rapidly worldwide, in parallel with the increasing prevalence of obesity. Although clinical algorithms based on blood test results are being developed to identify patients with progressive NASH, liver biopsy remains essential to establish both the diagnosis of NASH and the severity of the disease.
In a study, a murine model fed a choline-deficient, L-amino-acid-defined diet supplemented with cholesterol was used to evaluate hepatocellular ballooning and lobular inflammation in liver biopsy samples. An expert histopathologist determined the ballooning and inflammation scores for all the animals included in the study, and deep-learning models were constructed to detect and analyze these histological features. An initial training set of 31 was used to calibrate ballooning and inflammation for subsequent prediction of these histological features in four independent cohorts (n=271).
The study found that deep-learning algorithms applied using open-source pathology software QuPath1 (GENFIT, Loos, France), could accurately identify cell histology patterns consistent with lobular inflammation and hepatocellular ballooning - markers of disease activity that are essential to establish the diagnosis and severity of NASH. The deep-learning system was able to predict cell histological patterns relating to ballooning and inflammation with accuracies of 98% and 91%, respectively. Excellent agreement was observed between the expert and fully automated scores of ballooning at a cellular level for each of the cohorts. An excellent correlation was also observed with the full tissue samples, and between whole slide imaging-based automatic scoring of inflammation on the training cohort.
John Brozek, Chief Data and Information Officer at GENFIT, said, “Deep-learning-based scoring systems allow an exhaustive and reproducible analysis of all cells in a biopsy sample, and they can analyze specific regions of cells that can be difficult to interpret manually, even if you are an expert'. Automated scoring system for ballooning and inflammation showed a high correlation with expert evaluation and it is ready to be used for high-throughput activity scoring in pre-clinical studies or, in the near future, as a companion diagnostic tool for clinical application.” The study was presented at The International Liver Congress held April 11-15, 2018, in Paris, France.
Related Links:
GENFIT
NAFLD is regarded as a hepatic manifestation of metabolic syndrome, with the number of individuals with NAFLD/NASH increasing rapidly worldwide, in parallel with the increasing prevalence of obesity. Although clinical algorithms based on blood test results are being developed to identify patients with progressive NASH, liver biopsy remains essential to establish both the diagnosis of NASH and the severity of the disease.
In a study, a murine model fed a choline-deficient, L-amino-acid-defined diet supplemented with cholesterol was used to evaluate hepatocellular ballooning and lobular inflammation in liver biopsy samples. An expert histopathologist determined the ballooning and inflammation scores for all the animals included in the study, and deep-learning models were constructed to detect and analyze these histological features. An initial training set of 31 was used to calibrate ballooning and inflammation for subsequent prediction of these histological features in four independent cohorts (n=271).
The study found that deep-learning algorithms applied using open-source pathology software QuPath1 (GENFIT, Loos, France), could accurately identify cell histology patterns consistent with lobular inflammation and hepatocellular ballooning - markers of disease activity that are essential to establish the diagnosis and severity of NASH. The deep-learning system was able to predict cell histological patterns relating to ballooning and inflammation with accuracies of 98% and 91%, respectively. Excellent agreement was observed between the expert and fully automated scores of ballooning at a cellular level for each of the cohorts. An excellent correlation was also observed with the full tissue samples, and between whole slide imaging-based automatic scoring of inflammation on the training cohort.
John Brozek, Chief Data and Information Officer at GENFIT, said, “Deep-learning-based scoring systems allow an exhaustive and reproducible analysis of all cells in a biopsy sample, and they can analyze specific regions of cells that can be difficult to interpret manually, even if you are an expert'. Automated scoring system for ballooning and inflammation showed a high correlation with expert evaluation and it is ready to be used for high-throughput activity scoring in pre-clinical studies or, in the near future, as a companion diagnostic tool for clinical application.” The study was presented at The International Liver Congress held April 11-15, 2018, in Paris, France.
Related Links:
GENFIT
Latest Technology News
- Robotic Technology Unveiled for Automated Diagnostic Blood Draws
- ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
- Aptamer Biosensor Technology to Transform Virus Detection
- AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
- AI-Generated Sensors Open New Paths for Early Cancer Detection
- Pioneering Blood Test Detects Lung Cancer Using Infrared Imaging
- AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
- Diagnostic Chip Monitors Chemotherapy Effectiveness for Brain Cancer
- Machine Learning Models Diagnose ALS Earlier Through Blood Biomarkers
- Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







