LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Compound Demonstrates Potential as Broad-Spectrum Antiviral Drug

By LabMedica International staff writers
Posted on 12 Apr 2018
Print article
Image: Under a very-high magnification, this digitally colorized scanning electron micrograph (SEM) depicts a number of filamentous Ebola virus particles (red) that had budded from the surface of a VERO cell (brown) of the African green monkey kidney epithelial cell line (Photo courtesy of the [U.S.] National Institute of Allergy and Infectious Diseases).
Image: Under a very-high magnification, this digitally colorized scanning electron micrograph (SEM) depicts a number of filamentous Ebola virus particles (red) that had budded from the surface of a VERO cell (brown) of the African green monkey kidney epithelial cell line (Photo courtesy of the [U.S.] National Institute of Allergy and Infectious Diseases).
A team of molecular biologists identified a potent drug candidate with specificity towards especially deadly viruses such as Ebola virus and Marburg virus.

Ebola virus (EBOV), a member of the filovirus family, is an enveloped, single-stranded RNA virus that causes severe disease in humans. While there are no internationally approved therapies for EBOV, it is known that EBOV RNA synthesis is carried out by a virus-encoded complex with RNA-dependent RNA polymerase activity that is required for viral propagation. This complex and its activities are therefore potential antiviral targets.

To exploit this possible weakness in the virus, investigators at Georgia State University (Atlanta, USA) used a previously established 384-well microplate format minigenome assay (MGA) of EBOV RNA synthesis to screen a library of 200,000 small molecule compounds to identify potential inhibitors of Ebola virus RNA synthesis.

The investigators reported in the February 2018 issue of the journal Antiviral Research that the screen identified 56 hits that inhibited EBOV MGA activity by more than 70% while exhibiting less than 20% cell cytotoxicity. Inhibitory chemical scaffolds included angelicin derivatives, derivatives of the antiviral compound GSK983, and benzoquinolines. Benzoquinolines are isomeric compounds (such as 5,6-benzoquinoline and 7,8-benzoquinoline) in which a benzene ring is fused to that of a quinoline molecule; their derivatives are used in the preparation of pharmaceuticals and dyes.

Structure-activity relationship (SAR) studies of the benzoquinoline scaffold produced nearly 50 analogs and led to identification of an optimized compound, SW456, with antiviral activity against infectious EBOV in cell culture. The compound was also active against a MGA for another deadly filovirus, Marburg virus. Furthermore, this compound also exhibited antiviral activity towards a negative-sense RNA virus from the rhabdovirus family, vesicular stomatitis virus, and a positive-sense RNA virus, Zika virus.

Overall, the data accumulated during this study demonstrated the potential of the EBOV MGA to identify anti-EBOV compounds and identified the potential broad-spectrum antiviral properties of the benzoquinoline series.

"This work provides a foundation for the development of novel antiviral agents to combat Ebola virus," said senior author Dr. Christopher Basler, professor of microbial pathogenesis and biomedical sciences at Georgia State University.

Related Links:
Georgia State University

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Binocular Laboratory LED Illuminated Microscope
HumaScope Classic LED
New
Total 25-Hydroxyvitamin D₂ & D₃ Assay
25-OH-VD Reagent Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.