LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Critical Brain Cell Repair Gene Identified in Study

By LabMedica International staff writers
Posted on 10 Apr 2018
Print article
Image: Genetically modified astrocytes (red) line the lesion border in the injured spinal cord. A new mouse study showed that triggering a gene inside astrocytes activated the star-shaped cells and may improve the brain’s ability to heal from a range of debilitating conditions, from stroke to concussions and spine injuries (Photo courtesy of Dr. Meifan Amy Chen, University of Texas Southwestern Medical Center).
Image: Genetically modified astrocytes (red) line the lesion border in the injured spinal cord. A new mouse study showed that triggering a gene inside astrocytes activated the star-shaped cells and may improve the brain’s ability to heal from a range of debilitating conditions, from stroke to concussions and spine injuries (Photo courtesy of Dr. Meifan Amy Chen, University of Texas Southwestern Medical Center).
Repair of damaged brain cells depends on the process of astrogliosis, which has been shown to be regulated by the MAP3K13 (also known as leucine zipper-bearing kinase [LZK]) gene.

Astrogliosis (also known as reactive astrocytosis) is an abnormal increase in the number of astrocytes due to the destruction of nearby neurons from CNS trauma, infection, ischemia, stroke, autoimmune responses, or neurodegenerative disease. In healthy neural tissue, astrocytes play critical roles in energy provision, regulation of blood flow, homeostasis of extracellular fluid, homeostasis of ions and transmitters, regulation of synapse function, and synaptic remodeling. Astrogliosis changes the molecular expression and morphology of astrocytes, causing scar formation and, in severe cases, inhibition of axon regeneration.

In a recently published paper investigators at the University of Texas Southwestern Medical Center (Dallas, USA) used genetic loss and gain-of-function analyses in vivo, to show that the conserved LZK promoted astrocyte reactivity and glial scar formation after CNS injury.

The investigators reported in the March 27, 2018, issue of the journal Cell Reports that inducible LZK gene deletion in astrocytes of adult mice reduced astrogliosis and impaired glial scar formation, resulting in increased lesion size after spinal cord injury. Conversely, LZK overexpression in astrocytes enhanced astrogliosis and reduced lesion size. Remarkably, in the absence of injury, LZK overexpression alone induced widespread astrogliosis in the CNS and upregulated astrogliosis activator genes pSTAT3 and SOX9.

"We have known that astrocytes can help the brain and spinal cord recover from injury, but we did not fully understand the trigger that activates these cells," said contributing author Dr. Mark Goldberg, professor of neurology and neurotherapeutics at the University of Texas Southwestern Medical Center. "Now we will be able to look at whether turning on the switch we identified can help in the healing process."

Related Links:
University of Texas Southwestern Medical Center

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Centrifuge
Hematocrit Centrifuge 7511M4
New
Multi-Function Pipetting Platform
apricot PP5

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.