We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Less Toxic Drugs May Replace Current Chemotherapeutic Agents

By LabMedica International staff writers
Posted on 04 Apr 2018
Print article
Image: A family of economical silver-based complexes shows very promising results against a number of human cancers in laboratory tests, with very low toxicity in rat studies and minimal effects on healthy cells. One of these complexes, UJ3, is as effective as the industry-standard drug Cisplatin in killing cancer cells in laboratory tests done on human esophageal cancer, breast cancer, and melanoma. This matrix of light microscope images shows a comparison of human esophageal cancer cells treated with UJ3 and Cisplatin (Photo courtesy of Dr. Zelinda Engelbrecht, University of Johannesburg).
Image: A family of economical silver-based complexes shows very promising results against a number of human cancers in laboratory tests, with very low toxicity in rat studies and minimal effects on healthy cells. One of these complexes, UJ3, is as effective as the industry-standard drug Cisplatin in killing cancer cells in laboratory tests done on human esophageal cancer, breast cancer, and melanoma. This matrix of light microscope images shows a comparison of human esophageal cancer cells treated with UJ3 and Cisplatin (Photo courtesy of Dr. Zelinda Engelbrecht, University of Johannesburg).
A team of South African cancer researchers has suggested replacing the current frontline platinum-based chemotherapeutic drugs with first generation silver(I) phosphines, which have vast structural diversity and promising anticancer activity.

Increased incidences of cancer, side-effects to chemotherapeutic agents and redevelopment of tumors due to resistance has prompted the search for alternative compounds showing anticancer activity.

A fruit of this search has been the discovery by investigators at the University of Johannesburg (South Africa) of a new family of promising silver-based anti-cancer drugs. The most promising silver thiocyanate phosphine complex among these, called UJ3, was tested in rats and in human cancer cell cultures.

Results of the study published in the April 2018 issue of the journal BioMetals revealed the effective induction of cell death by a silver(I) thiocyanate 4-methoxyphenyl phosphine complex (UJ3) in a malignant esophageal cell line. Apoptotic cell death was confirmed in treated cells. Moreover, mitochondrial targeting via the intrinsic cell death pathway was evident due to low levels of ATP, altered ROS (reactive oxygen species) activity, mitochondrial membrane depolarization, cytochrome c release, and caspase-9 cleavage.

The complex silver(I) phosphine complex displayed low cytotoxicity towards two human non-malignant, skin and kidney, cell lines.

"In rat studies, we see that up to three grams of UJ3 can be tolerated per one kilogram of bodyweight. This makes UJ3 and other silver phosphine complexes we have tested about as toxic as vitamin C," said senior author Dr. Reinout Meijboom, professor of chemistry at the University of Johannesburg. "These complexes can be synthesized with standard laboratory equipment, which shows good potential for large scale manufacture. The family of silver thiocyanate phosphine compounds is very large. We were very fortunate to test UJ3, which has an unusually "flat" chemical structure, early on in our exploration of this chemical family for cancer treatment."

Related Links:
University of Johannesburg

Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Coagulation Analyzer
CS-2400
New
Piezoelectric Micropump
Disc Pump

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.