Innovations Increase Sensitivity of CTC Detection
By LabMedica International staff writers Posted on 28 Mar 2018 |

Image: A version of the CapioCyte technology used in the study, which directs the flow of a small amount of patient\'s blood through a chamber lined with tumor cell-capturing proteins (Photo courtesy of Michael Poellman, University of Wisconsin).
Innovations in the methodology used to collect circulating tumor cells (CTCs) from blood specimens will allow reliable monitoring of CTC changes during and after treatment.
The detection of CTCs may have important prognostic and therapeutic implications, but because their numbers can be very small, these cells are not easily detected. It has been estimated that among the cells that have detached from a primary tumor, only 0.01% can form metastases. Circulating tumor cells are found in frequencies on the order of one to 10 CTCs per milliliter of whole blood in patients with metastatic disease. For comparison, one milliliter of blood contains a few million white blood cells and a billion red blood cells. This low frequency, associated to difficulty of identifying cancerous cells, means that a key component of understanding CTCs biological properties require technologies and approaches capable of isolating one CTC per milliliter of blood, either by enrichment, or with enrichment-free assays that identify all CTC subtypes in sufficiently high definition to satisfy diagnostic pathology image-quantity requirements in patients with a variety of cancer types.
Towards this end, investigators at the University of Wisconsin (Madison, USA) examined the effects of multivalent binding and biomimetic cell rolling on the sensitivity and specificity of CTC capture. They also investigated the clinical significance of CTCs and their kinetic profiles in cancer patients undergoing radiotherapy (RT) treatment.
For the study peripheral blood was collected prospectively at up to five time points from 24 patients with head-and-neck, prostate, rectal, or cervical cancer who were undergoing radiation therapy (RT), with or without chemotherapy.
CTC capture was accomplished using the Capio Biosciences (Madison, WI, USA) CapioCyte nanotechnology-based assay system functionalized with anti-EpCAM (Epithelial cell adhesion molecule), anti-HER-2 (human epidermal growth factor receptor 2), and anti-EGFR (Epidermal growth factor receptor).
The CapioCyte platform utilizes proprietary chips that are inserted into a specially designed flow chamber. Samples are then passed through this flow chamber at a precisely controlled rate. The surface of the chip is specially treated to induce biomimetic cell rolling to enable cell capture utilizing antibodies bound to dendrimers. Cell rolling mimics the physiological interaction of CTCs and blood vessel walls, slowing movement and recruiting and enriching cells within the flow chamber. Once captured, CTCs can either be recovered for post capture analysis such as RNA-Seq, or they can be automatically stained for subsequent fluorescence image capture.
Results published in the March 15, 2018, online edition of the journal Clinical Cancer Research revealed that the CapioCyte system was able to detect CTCs in all 24 cancer patients. Multivalent binding via poly(amidoamine) dendrimers further improved capture sensitivity. The cell rolling effect improved CTC capture specificity by up to 38%. CTCs declined throughout RT in patients with complete clinical and/or radiographic response, in contrast to an elevation in CTCs at mid or post-RT in the two patients with known pathologic residual disease.
"The absolute numbers of CTCs do not represent too much because there is too much variation individually, but the more important thing we found was the trend - how the CTC numbers change over time upon treatment. So, for example, we have shown that the CTCs go down when the patients are responding really well to the radiotherapy," said senior author Dr. Seungpyo Hong, professor of pharmacy at the University of Wisconsin. "What makes us excited in particular is we can see the direct impact. As a researcher, if you develop a new technology and it can directly help people, that is going to be the most rewarding experience – it is really exciting."
Related Links:
University of Wisconsin
Capio Biosciences
The detection of CTCs may have important prognostic and therapeutic implications, but because their numbers can be very small, these cells are not easily detected. It has been estimated that among the cells that have detached from a primary tumor, only 0.01% can form metastases. Circulating tumor cells are found in frequencies on the order of one to 10 CTCs per milliliter of whole blood in patients with metastatic disease. For comparison, one milliliter of blood contains a few million white blood cells and a billion red blood cells. This low frequency, associated to difficulty of identifying cancerous cells, means that a key component of understanding CTCs biological properties require technologies and approaches capable of isolating one CTC per milliliter of blood, either by enrichment, or with enrichment-free assays that identify all CTC subtypes in sufficiently high definition to satisfy diagnostic pathology image-quantity requirements in patients with a variety of cancer types.
Towards this end, investigators at the University of Wisconsin (Madison, USA) examined the effects of multivalent binding and biomimetic cell rolling on the sensitivity and specificity of CTC capture. They also investigated the clinical significance of CTCs and their kinetic profiles in cancer patients undergoing radiotherapy (RT) treatment.
For the study peripheral blood was collected prospectively at up to five time points from 24 patients with head-and-neck, prostate, rectal, or cervical cancer who were undergoing radiation therapy (RT), with or without chemotherapy.
CTC capture was accomplished using the Capio Biosciences (Madison, WI, USA) CapioCyte nanotechnology-based assay system functionalized with anti-EpCAM (Epithelial cell adhesion molecule), anti-HER-2 (human epidermal growth factor receptor 2), and anti-EGFR (Epidermal growth factor receptor).
The CapioCyte platform utilizes proprietary chips that are inserted into a specially designed flow chamber. Samples are then passed through this flow chamber at a precisely controlled rate. The surface of the chip is specially treated to induce biomimetic cell rolling to enable cell capture utilizing antibodies bound to dendrimers. Cell rolling mimics the physiological interaction of CTCs and blood vessel walls, slowing movement and recruiting and enriching cells within the flow chamber. Once captured, CTCs can either be recovered for post capture analysis such as RNA-Seq, or they can be automatically stained for subsequent fluorescence image capture.
Results published in the March 15, 2018, online edition of the journal Clinical Cancer Research revealed that the CapioCyte system was able to detect CTCs in all 24 cancer patients. Multivalent binding via poly(amidoamine) dendrimers further improved capture sensitivity. The cell rolling effect improved CTC capture specificity by up to 38%. CTCs declined throughout RT in patients with complete clinical and/or radiographic response, in contrast to an elevation in CTCs at mid or post-RT in the two patients with known pathologic residual disease.
"The absolute numbers of CTCs do not represent too much because there is too much variation individually, but the more important thing we found was the trend - how the CTC numbers change over time upon treatment. So, for example, we have shown that the CTCs go down when the patients are responding really well to the radiotherapy," said senior author Dr. Seungpyo Hong, professor of pharmacy at the University of Wisconsin. "What makes us excited in particular is we can see the direct impact. As a researcher, if you develop a new technology and it can directly help people, that is going to be the most rewarding experience – it is really exciting."
Related Links:
University of Wisconsin
Capio Biosciences
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Simple Blood Test Improves Heart Attack and Stroke Risk Prediction
Troponin is a protein found in heart muscle cells that is released into the bloodstream when the heart is damaged. High-sensitivity troponin blood tests are commonly used in hospitals to diagnose heart... Read more
Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
New medications for Alzheimer’s disease, the most common form of dementia, are now becoming available. These treatments, known as “amyloid antibodies,” work by promoting the removal of small deposits from... Read more
Novel Autoantibody Against DAGLA Discovered in Cerebellitis
Autoimmune cerebellar ataxias are strongly disabling disorders characterized by an impaired ability to coordinate muscle movement. Cerebellar autoantibodies serve as useful biomarkers to support rapid... Read more
Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Spit Test More Accurate at Identifying Future Prostate Cancer Risk
Currently, blood tests that measure the level of a protein called prostate-specific antigen (PSA) are commonly used to identify men at higher risk for prostate cancer. This test is typically used based... Read more
DNA Nanotechnology Boosts Sensitivity of Test Strips
Since the Covid-19 pandemic, most people have become familiar with paper-based rapid test strips, also known as lateral flow immunoassays (LFIAs). These tests are used to quickly detect biomarkers that... Read more
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more