LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Novel Hydrogel Slows Tumor Growth and Prevents Recurrence

By LabMedica International staff writers
Posted on 06 Mar 2018
Print article
Image: When injected into tumors, this therapy forms a gel to attack cancer cells (Photo courtesy of the Gu Laboratory, University of North Carolina).
Image: When injected into tumors, this therapy forms a gel to attack cancer cells (Photo courtesy of the Gu Laboratory, University of North Carolina).
A team of cancer researchers developed a novel hydrogel device designed to be injected at the site of a tumor, where it forms a scaffold for sequential release of chemotherapeutic and immunotherapeutic drugs.

Clinical experience has shown that patients with low-immunogenic tumors respond poorly to immune checkpoint blockade (ICB) treatments that target the programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) pathway. On the other hand, patients responding to ICB can experience various unpleasant side effects.

Investigators at the University of North Carolina (Chapel Hill, USA) addressed both of these concerns by maximizing drug access to tumors while minimizing systemic exposure to the drugs. To do this, they engineered a therapeutic scaffold that, when formed in situ, allowed the local release of gemcitabine (GEM) and an anti–PD-L1 blocking antibody (aPDL1) with distinct release kinetics. The scaffold consisted of a reactive oxygen species (ROS)-degradable hydrogel that released therapeutics in a programmed manner within the tumor microenvironment (TME), which contained abundant ROS.

The investigators reported in the February 21, 2018, online edition of the journal Science Translational Medicine that, once in place, the hydrogel first released cytotoxic chemotherapy, which killed some cancer cells before releasing most of an immune checkpoint inhibitor, which then stimulated antitumor immunity. The investigators employed this approach to inhibit growth of primary tumors in mouse models as well as to prevent tumor recurrence after surgery.

"We have created a simple method to use chemotherapy while leveraging the biology of the tumor and our natural defense against foreign invaders to beat back tumor development with limited side effects," said senior author Dr. Zhen Gu, associate professor of biomedical engineering at the University of North Carolina. "We have a lot more work to do before human clinical trials, but we think this approach holds great promise."

"Regarding the potential of this approach, scientists should further investigate the biocompatibility of using the gel scaffold for clinical benefit," said Dr. Gu. "Meanwhile, we will optimize the dosages of combination drugs as well as treatment frequencies."

Related Links:
University of North Carolina

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Mycoplasma Pneumoniae Virus Test
Mycoplasma Pneumoniae Virus Detection Kit
New
Respiratory Bacterial Panel
Real Respiratory Bacterial Panel 2

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.