New Cholesterol Calculation May Avoid Fasting
By LabMedica International staff writers Posted on 23 Jan 2018 |

Image: New accurate cholesterol test may allow patients to pass on fasting (Photo courtesy of Johns Hopkins School of Medicine).
In a direct comparison study, scientists have added to evidence that a newer method of calculating low-density lipoprotein-cholesterol levels in the blood is more accurate than the older method in people who did not fast before blood was drawn.
Recent recommendations favoring non-fasting lipid assessment may impact low-density lipoprotein-cholesterol (LDL-C) estimation. The novel method of LDL-C estimation (LDL-CN) uses a flexible approach to derive patient-specific triglyceride (TG) to very low-density lipoprotein-cholesterol ratios.
Blood lipid specialists and their colleagues at Johns Hopkins School of Medicine (Baltimore, MD, USA) used a USA cross-sectional sample of 1,545,634 patients (959,153 fasting ≥10-12 hours; 586,481 non-fasting) from the second harvest of the Very Large Database of Lipids study to assess for the first time the impact of fasting status on novel LDL-C accuracy. Rapid ultracentrifugation was used to directly measure LDL cholesterol content (LDL-CD). Accuracy was defined as the percentage of LDL-CD falling within the novel method of LDL-C estimation (LDL-CN) or the classical Friedewald method (LDL-CF) category by clinical cut-point. For low estimated LDL-C (<70 mg/dL), they evaluated accuracy by TG levels. The magnitude of absolute and percent differences between LDL-CD and estimated LDL-C (LDL-CN or LDL-CF) was stratified by LDL-C and TG categories.
The scientists reported that in both fasting and non-fasting samples, accuracy was higher with the novel method across all clinical LDL-C categories (range: 87-94%) compared to Friedewald estimation (range: 71-93%). Approximately 30% of the non-fasting participants had greater than 10 mg/dL inaccurate cholesterol measurements using the Friedewald method compared with only 3% error from the actual measured value with the new method. The investigators reported that the overall accuracy of LDL calculations decreased as levels of triglycerides increased, particularly when using the Friedewald method. For example, in 6,168 non-fasting participants with high triglycerides between 200 to 399 mg/dL, the accuracy of the calculation among those in the less than 70 mg/dL LDL range was 82% with the new method versus 37% using the Friedewald method.
Seth Shay Martin, MD, MHS, an Assistant Professor of Medicine and senior author of the study, said, “Although the new LDL calculation method is a bit more complex, the beauty is that it can be performed using information that is already collected in the blood sample for the standard lipid profile and automated in the lab’s computer system to give a more accurate result. Since non-fasting samples are now accurate, it’s more convenient for patients because they can come in anytime and don’t need to return for a second appointment if they have eaten.” The study was published on January 2, 2018, in the journal Circulation.
Related Links:
Johns Hopkins School of Medicine
Recent recommendations favoring non-fasting lipid assessment may impact low-density lipoprotein-cholesterol (LDL-C) estimation. The novel method of LDL-C estimation (LDL-CN) uses a flexible approach to derive patient-specific triglyceride (TG) to very low-density lipoprotein-cholesterol ratios.
Blood lipid specialists and their colleagues at Johns Hopkins School of Medicine (Baltimore, MD, USA) used a USA cross-sectional sample of 1,545,634 patients (959,153 fasting ≥10-12 hours; 586,481 non-fasting) from the second harvest of the Very Large Database of Lipids study to assess for the first time the impact of fasting status on novel LDL-C accuracy. Rapid ultracentrifugation was used to directly measure LDL cholesterol content (LDL-CD). Accuracy was defined as the percentage of LDL-CD falling within the novel method of LDL-C estimation (LDL-CN) or the classical Friedewald method (LDL-CF) category by clinical cut-point. For low estimated LDL-C (<70 mg/dL), they evaluated accuracy by TG levels. The magnitude of absolute and percent differences between LDL-CD and estimated LDL-C (LDL-CN or LDL-CF) was stratified by LDL-C and TG categories.
The scientists reported that in both fasting and non-fasting samples, accuracy was higher with the novel method across all clinical LDL-C categories (range: 87-94%) compared to Friedewald estimation (range: 71-93%). Approximately 30% of the non-fasting participants had greater than 10 mg/dL inaccurate cholesterol measurements using the Friedewald method compared with only 3% error from the actual measured value with the new method. The investigators reported that the overall accuracy of LDL calculations decreased as levels of triglycerides increased, particularly when using the Friedewald method. For example, in 6,168 non-fasting participants with high triglycerides between 200 to 399 mg/dL, the accuracy of the calculation among those in the less than 70 mg/dL LDL range was 82% with the new method versus 37% using the Friedewald method.
Seth Shay Martin, MD, MHS, an Assistant Professor of Medicine and senior author of the study, said, “Although the new LDL calculation method is a bit more complex, the beauty is that it can be performed using information that is already collected in the blood sample for the standard lipid profile and automated in the lab’s computer system to give a more accurate result. Since non-fasting samples are now accurate, it’s more convenient for patients because they can come in anytime and don’t need to return for a second appointment if they have eaten.” The study was published on January 2, 2018, in the journal Circulation.
Related Links:
Johns Hopkins School of Medicine
Latest Clinical Chem. News
- AI-Powered Blood Test Accurately Detects Ovarian Cancer
- Automated Decentralized cfDNA NGS Assay Identifies Alterations in Advanced Solid Tumors
- Mass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
- First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
- Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse
- ‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
- Low-Cost Portable Screening Test to Transform Kidney Disease Detection
- New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
- Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
- Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
- AI-Powered Raman Spectroscopy Method Enables Rapid Drug Detection in Blood
- Novel LC-MS/MS Assay Detects Low Creatinine in Sweat and Saliva
- Biosensing Technology Breakthrough Paves Way for New Methods of Early Disease Detection
- New Saliva Test Rapidly Identifies Paracetamol Overdose
- POC Saliva Testing Device Predicts Heart Failure in 15 Minutes
- Screening Tool Detects Multiple Health Conditions from Single Blood Drop
Channels
Molecular Diagnostics
view channel
POC Diagnostic Platform Combines Immunoassay and Molecular Testing
An innovative diagnostic platform offers superior sensitivity across all sample types, including blood, compared to existing rapid tests, while maintaining a low-cost, user-friendly design.... Read more
Single Blood Test Could Detect Different Types of Cancer at Early Stages
Currently, reliable screening for only a few types of cancer is available, such as those affecting the breast, bowel, cervix (neck of the womb), and lung for individuals at high risk. While these screenings... Read moreHematology
view channel
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read more
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
New Blood Test Detects Up to Five Infectious Diseases at POC
Researchers have developed a prototype flow-through assay capable of detecting up to five different infections, with results that can be quickly analyzed and transmitted via a specialized smartphone app.... Read more
Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, led to 1.25 million deaths in 2023, with 13% of those occurring in people living with HIV. The current primary diagnostic method for... Read morePathology
view channel
Groundbreaking Chest Pain Triage Algorithm to Transform Cardiac Care
Cardiovascular disease is responsible for a third of all deaths worldwide, and chest pain is the second most common reason for emergency department (ED) visits. With EDs often being some of the busiest... Read more
AI-Based Liquid Biopsy Approach to Revolutionize Brain Cancer Detection
Detecting brain cancers remains extremely challenging, with many patients only receiving a diagnosis at later stages after symptoms like headaches, seizures, or cognitive issues appear. Late-stage diagnoses... Read moreTechnology
view channel
Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read moreIndustry
view channel
Qiagen Acquires NGS Analysis Software Company Genoox
QIAGEN (Venlo, the Netherlands) has signed a definitive agreement to acquire Genoox (Tel Aviv, Israel), a provider of artificial intelligence (AI)-powered software that enables clinical labs to scale and... Read more
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more